首页> 美国卫生研究院文献>Elsevier Sponsored Documents >The Polycomb-Dependent Epigenome Controls β Cell Dysfunction Dedifferentiation and Diabetes
【2h】

The Polycomb-Dependent Epigenome Controls β Cell Dysfunction Dedifferentiation and Diabetes

机译:依赖于多梳的表观基因组控制β细胞功能异常去分化和糖尿病

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionComplex diseases such as cancer, autoimmunity, obesity, and diabetes represent some of the greatest socio-economic challenges of our day. They result from genetic predisposition but contain equally strong non-genetic components, often termed “environmental influences,” that alter susceptibility, reversibility, and triggering of disease. Non-genetic regulation is believed to converge upon chromatin-dependent processes, etiological contributions that remain poorly understood.Diabetes affects more than 400 million individuals worldwide (). It presents predominantly in either an early-onset autoimmune type 1 or a heterogeneous type 2 diabetes (T2D) associated with obesity, inflammation, and insulin resistance. Ultimately, diabetes results from insufficient insulin-secreting β cell mass, resulting from impaired function, increased cell death, or loss of cell identity. The last decades have seen major advances in our understanding of β cell identity, development, and plasticity. β Cells are believed to be highly plastic (, ), and pioneering studies over the last decades have revealed networks of transcriptional and chromatin regulators that drive β cell lineage development (, , , , , ) and that provide barriers against transdifferentiation or loss of β cell identity (, , , , , , href="#bib45" rid="bib45" class=" bibr popnode">Swisa et al., 2017, href="#bib17" rid="bib17" class=" bibr popnode">Ediger et al., 2017, href="#bib14" rid="bib14" class=" bibr popnode">Collombat et al., 2009, href="#bib24" rid="bib24" class=" bibr popnode">Gutiérrez et al., 2017).To date, it remains poorly understood how transcriptional programs are stabilized over the long cellular lifespans that can be found in vivo. Since adult β cells are both long-lived and highly plastic, mechanisms are thought to be in place to continuously reinforce and stabilize the terminally differentiated state (href="#bib13" rid="bib13" class=" bibr popnode">Cnop et al., 2011, href="#bib46" rid="bib46" class=" bibr popnode">Szabat et al., 2012). Seminal studies in both wild-type (href="#bib23" rid="bib23" class=" bibr popnode">Guo et al., 2013, href="#bib30" rid="bib30" class=" bibr popnode">Laybutt et al., 2003) and in genetic (href="#bib47" rid="bib47" class=" bibr popnode">Talchai et al., 2012, href="#bib10" rid="bib10" class=" bibr popnode">Brereton et al., 2014, href="#bib52" rid="bib52" class=" bibr popnode">Wang et al., 2014) models have highlighted relative losses of β cell identity, or “dedifferentiation,” with mounting metabolic stress. Dedifferentiation was coined to describe either a reversal of the differentiation trajectory back toward progenitor states or a loss of terminal differentiation markers and phenotypes (href="#bib27" rid="bib27" class=" bibr popnode">Holmberg and Perlmann, 2012, href="#bib53" rid="bib53" class=" bibr popnode">Weir et al., 2013). Studies have documented the phenomenon in culture (href="#bib39" rid="bib39" class=" bibr popnode">Russ et al., 2008) and in T2D, in rodents and in humans tissues, and have focused on re-appearance of progenitor markers (ALDH1A; href="#bib12" rid="bib12" class=" bibr popnode">Cinti et al., 2016), as well as loss of lineage-defining gene expression as cardinal features (PDX1, MAFA, NKX6-1, INS, and GLUT2; href="#bib23" rid="bib23" class=" bibr popnode">Guo et al., 2013). To date, aside from identification of a limited number of inducers (hyperglycemia, β cell inexcitability, and NPAS4 or FoxO1 deficiency), we understand little of the molecular mechanisms that define how and when dedifferentiation occurs (href="#bib40" rid="bib40" class=" bibr popnode">Sabatini et al., 2018, href="#bib6" rid="bib6" class=" bibr popnode">Bensellam et al., 2017).One chromatin-regulatory system important to defining cell fate trajectories is Polycomb. Polycomb comprises two sets of repressive complexes, PRC1 and PRC2, that mediate stable gene silencing through time and cell division (href="#bib33" rid="bib33" class=" bibr popnode">Margueron and Reinberg, 2011, href="#bib41" rid="bib41" class=" bibr popnode">Schuettengruber and Cavalli, 2009). PRC1 and PRC2 are non-redundant, with distinct loss-of-function phenotypes. PRC2 methylates the histone lysine residue H3K27 and is sufficient to silence gene expression (href="#bib33" rid="bib33" class=" bibr popnode">Margueron and Reinberg, 2011). PRC1 ubiquitinates H2AK119 at PRC2 marked domains, promoting chromatin compaction and further silencing (href="#bib42" rid="bib42" class=" bibr popnode">Simon and Kingston, 2013). Numerous PRC1 and PRC2 sub-complexes have emerged in recent literature, revealing additional unexplored complexities. Redundancies also exist, a prime example being the core PRC2 methyltransferases themselves, Ezh1 and Ezh2 (href="#bib56" rid="bib56" class=" bibr popnode">Xie et al., 2014, href="#bib18" rid="bib18" class=" bibr popnode">Ezhkova et al., 2011).Here, we used unbiased epigenome mapping and single-cell RNA sequencing (scRNA-seq) to explore the chromatin dependence of transcriptional regulation in β cells. We observed two signatures of chromatin-state-associated transcriptional dysregulation consistent between human T2D- and high-fat diet (HFD)-driven β cell dysfunction: first, a loss-of-silencing at poised/bivalent Polycomb domains, and, second, collapse of gene expression at a unique subset of highly accessible active domains including cardinal lineage determinants. β cell-specific loss of Eed/PRC2 not only recapitulated these key chromatin-state-associated changes, but also triggered highly penetrant, largely hyperglycemia-independent, β cell dedifferentiation, implicating impaired PRC2 function as exacerbatory in diabetes. These findings identify Eed/PRC2 as necessary for maintenance of global gene silencing and terminal differentiation in β cells, and suggest a “two-hit” (chromatin and hyperglycemia) model of β cell dedifferentiation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介复杂的疾病,例如癌症,自身免疫性疾病,肥胖症和糖尿病,代表了一些最伟大的社会-今天的经济挑战。它们源于遗传易感性,但包含同样强大的非遗传成分,通常被称为“环境影响”,会改变易感性,可逆性和疾病触发。据信非遗传调节集中在染色质依赖的过程上,病因学贡献仍知之甚少。糖尿病影响着全世界4亿多人。它主要表现为与肥胖,炎症和胰岛素抵抗相关的早发性自身免疫1型或异质2型糖尿病(T2D)。最终,糖尿病是由于功能受损,细胞死亡增加或细胞身份丧失导致胰岛素分泌β细胞质量不足所致。在过去的几十年中,我们对β细胞的特性,发育和可塑性的理解有了重大进展。 β细胞被认为是高度可塑性的(,),并且在过去的几十年中,开创性研究已经揭示了转录和染色质调节剂网络,这些网络驱动β细胞谱系的发育(,,,,,),并提供了阻止转分化或β丢失的屏障。单元格标识(````````href="#bib45" rid="bib45" class=" bibr popnode"> Swisa et al。,2017 ,href =“#bib17” rid = “ bib17” class =“ bibr popnode”> Ediger等,2017 ,href="#bib14" rid="bib14" class=" bibr popnode"> Collombat等,2009 ,href="#bib24" rid="bib24" class=" bibr popnode">古蒂雷斯(Gutiérrezet al。,2017 )。到目前为止,人们对长程细胞中转录程序如何稳定的了解仍然很少。在vivo中可以找到的寿命。由于成年β细胞既是长寿的又是高度可塑性的,因此认为存在可以持续增强和稳定终末分化状态的机制(href="#bib13" rid="bib13" class=" bibr popnode"> Cnop等人,2011 ,href="#bib46" rid="bib46" class=" bibr popnode"> Szabat等人,2012 )。两种野生型的开创性研究(href="#bib23" rid="bib23" class=" bibr popnode"> Guo et al。,2013 ,href =“#bib30” rid =“ bib30“ class =” bibr popnode“> Laybutt等人,2003 )和遗传学中的方法(href="#bib47" rid="bib47" class=" bibr popnode"> Talchai等人,2012年) ,href="#bib10" rid="bib10" class=" bibr popnode">布雷顿等人,2014 ,href =“#bib52” rid =“ bib52”类=“ bibr popnode”> Wang等人,2014 )模型强调了随着代谢压力的增加,β细胞身份或“去分化”的相对损失。去分化是为了描述分化轨迹向祖细胞状态的逆转或终末分化标记和表型的丧失而描述的(href="#bib27" rid="bib27" class=" bibr popnode"> Holmberg和Perlmann, 2012 ,href="#bib53" rid="bib53" class=" bibr popnode"> Weir等人,2013 )。研究已证明这种现象在文化(href="#bib39" rid="bib39" class=" bibr popnode"> Russ et al。,2008 )和T2D中,啮齿动物和人体组织中,并专注于祖细胞标记的重新出现(ALDH1A; href="#bib12" rid="bib12" class=" bibr popnode"> Cinti等人,2016 ),以及定义谱系作为主要特征的基因表达(PDX1,MAFA,NKX6-1,INS和GLUT2; href="#bib23" rid="bib23" class=" bibr popnode"> Gu et al。,2013 )。迄今为止,除了鉴定出数量有限的诱导物(高血糖,β细胞兴奋性和NPAS4或FoxO1缺乏症)外,我们几乎不了解定义去分化发生方式和时间的分子机制(<​​a href =“#bib40” =“ bib40” class =“ bibr popnode”>萨巴蒂尼等人,2018 ,href="#bib6" rid="bib6" class=" bibr popnode">本塞拉姆等人,2017 Margueron和Reinberg,2011年,href="#bib41" rid="bib41" class=" bibr popnode"> Schuettengruber和Cavalli,2009 )。 PRC1和PRC2是非冗余的,具有明显的功能丧失表型。 PRC2甲基化组蛋白赖氨酸残基H3K27,足以使基因表达沉默(href="#bib33" rid="bib33" class=" bibr popnode"> Margueron and Reinberg,2011 )。 PRC1在PRC2标记的域上泛素化H2AK119,从而促进染色质紧缩并进一步沉默(href="#bib42" rid="bib42" class=" bibr popnode"> Simon和Kingston,2013 )。最近的文献中出现了许多PRC1和PRC2子复合物,揭示了其他未开发的复杂性。冗余也存在,主要的例子是核心PRC2甲基转移酶本身Ezh1和Ezh2(href="#bib56" rid="bib56" class=" bibr popnode"> Xie et al。,2014 ,< a href =“#bib18” rid =“ bib18” class =“ bibr popnode”> Ezhkova等人,2011 )。在这里,我们使用了无偏见的表观基因组定位和单细胞RNA测序(scRNA-seq)探索β细胞转录调控的染色质依赖性。我们观察到人类T2D和高脂饮食(HFD)驱动的β细胞功能障碍之间存在与染色质状态相关的转录失调的两个特征:首先,在平衡/二价Polycomb域中失去沉默,其次,基因表达在包括基元谱系决定子在内的高度可访问的活性域的唯一子集处崩溃。 β细胞特异性Eed / PRC2的丢失不仅概括了这些主要的与染色质状态相关的变化,而且还引发了高度渗透性,很大程度上不依赖于高血糖的β细胞去分化,暗示了PRC2受损在糖尿病中的病情加重。这些发现确定Eed / PRC2是维持β细胞总体基因沉默和终末分化所必需的,并提出了β细胞去分化的“两次打击”(染色质和高血糖)模型。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号