首页> 美国卫生研究院文献>Elsevier Sponsored Documents >POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication
【2h】

POLE3-POLE4 Is a Histone H3-H4 Chaperone that Maintains Chromatin Integrity during DNA Replication

机译:POLE3-POLE4是组蛋白H3-H4分子伴侣可在DNA复制过程中保持染色质完整性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionDuring S phase of the cell cycle, accurate and processive replication of genomic DNA has to be coupled to duplication of the epigenetic information encoded in histones and their post-translational modifications (). For this to happen, chromatin must be disrupted ahead of the replication fork and restored in a timely and regulated fashion on sister chromatids, a process known as replication-coupled nucleosome assembly (, , ). This process relies on two different but interlocked mechanisms involving the recycling of parental histones and the deposition of newly synthesized ones.Coordination of these processes is particularly important for both the transmission of heterochromatic domains, such as those next to centromeres and telomeres, and the maintenance of cellular differentiation and identity (, , ). Furthermore, alteration of chromatin assembly has been linked to human genetic diseases, such as Wolf-Hirschhorn syndrome and congenital dyserythropoietic anemia type I (, ), as well as to acquired diseases such as cancer (). Changes in chromatin composition and structure also impact on aging (, ).The mechanisms that coordinate parental histone recycling and deposition of newly synthesized histones and how these function during leading- and lagging-strand replication remain to be deciphered. Several histone chaperones have been implicated in handling histones and participate in their transfer during DNA replication (). The histone chaperone CAF-1 (chromatin assembly factor 1) deposits new histones in a DNA synthesis-dependent manner (, , href="#bib62" rid="bib62" class=" bibr popnode">Verreault et al., 1996). With respect to recycling of parental histones, a role has been recently ascribed to the MCM2 component of the eukaryotic replicative helicase MCM2-7, which directly binds histones H3-H4 via a N-terminal domain (href="#bib28" rid="bib28" class=" bibr popnode">Ishimi et al., 2001, href="#bib16" rid="bib16" class=" bibr popnode">Foltman et al., 2013), together with the essential histone chaperone Asf1 (href="#bib23" rid="bib23" class=" bibr popnode">Groth et al., 2007b). Structural studies have revealed that MCM2 acts by shielding H3-H4 surfaces normally bound by DNA or histones H2A/H2B (href="#bib26" rid="bib26" class=" bibr popnode">Huang et al., 2015, href="#bib51" rid="bib51" class=" bibr popnode">Richet et al., 2015). The histone chaperone FACT (facilitates chromatin transcription), which is able to chaperone both H2A/H2B and H3/H4 histones, has been found to travel with the replisome in S. cerevisiae (href="#bib19" rid="bib19" class=" bibr popnode">Gambus et al., 2006) and is proposed to participate in chromatin dismantling/deposition at the fork (href="#bib16" rid="bib16" class=" bibr popnode">Foltman et al., 2013, href="#bib64" rid="bib64" class=" bibr popnode">Yang et al., 2016, href="#bib35" rid="bib35" class=" bibr popnode">Kurat et al., 2017). Recent studies have also shown that the single-strand binding protein RPA binds histones H3-H4 and promotes nucleosome assembly at the replication fork (href="#bib38" rid="bib38" class=" bibr popnode">Liu et al., 2017).Observations in budding and fission yeast have suggested a role for the leading-strand polymerase Polε in maintaining heterochromatin regions (href="#bib27" rid="bib27" class=" bibr popnode">Iida and Araki, 2004, href="#bib36" rid="bib36" class=" bibr popnode">Li et al., 2011); this function seems to be mainly dependent upon the smallest subunits of Polε, Dpb3 and Dpb4 (href="#bib27" rid="bib27" class=" bibr popnode">Iida and Araki, 2004, href="#bib25" rid="bib25" class=" bibr popnode">He et al., 2017). ΔDpb3 and ΔDpb4 yeast strains exhibit defective heterochromatin maintenance, which is also shared with strains lacking essential replisome-associated chaperones such as CAF-1, Asf1, and MCM2 HBD (histone binding domain) (href="#bib55" rid="bib55" class=" bibr popnode">Singer et al., 1998, href="#bib30" rid="bib30" class=" bibr popnode">Kaufman et al., 1997, href="#bib16" rid="bib16" class=" bibr popnode">Foltman et al., 2013). How Dpb3 and Dpb4 contribute to the maintenance of heterochromatin remains unclear.Here we show that the POLE3-POLE4 accessory subunits of mammalian Polε selectively bind to histones H3-H4 during replication-coupled nucleosome assembly. We define the mechanistic basis of POLE3-POLE4 binding and uncover an intrinsic chaperone activity toward H3-H4. In mammalian cells, depletion of POLE3 or POLE4 or removal of the C terminus of POLE3, which confers binding to H3-H4, directly impacts on nucleosome dynamics at the replication fork. Collectively, our work reveals mammalian POLE3-POLE4 as a replisome-associated histone H3-H4 chaperone that plays an important role in chromatin maintenance during DNA replication.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介在细胞周期的S期,必须准确且连续地复制基因组DNA再加上组蛋白编码的表观遗传信息的重复及其翻译后修饰()。为了做到这一点,必须在复制叉之前破坏染色质,并在姐妹染色单体上及时且有规律地恢复染色质,这一过程称为复制偶联核小体组装(“”)。这个过程依赖于两个不同但相互联系的机制,涉及亲本组蛋白的再循环和新合成的组蛋白的沉积。这些过程的协调对于异色域(例如着丝粒和端粒旁边的域)的传输以及维护特别重要。细胞分化和同一性(,,)。此外,染色质装配的改变已与人类遗传疾病(例如Wolf-Hirschhorn综合征和I型先天性促红细胞生成性贫血)以及与获得性疾病(例如癌症)相关。染色质组成和结构的变化也会影响衰老(,)。协调父母组蛋白循环和新合成组蛋白沉积的机制,以及在前导链和滞后链复制过程中这些功能如何发挥作用尚待研究。几种组蛋白分子伴侣已参与处理组蛋白并参与了DNA复制过程中的转移()。组蛋白伴侣CAF-1(染色质装配因子1)以依赖DNA合成的方式沉积新的组蛋白(,,href="#bib62" rid="bib62" class=" bibr popnode"> Verreault等, 1996 )。关于亲本组蛋白的再循环,最近已将作用归因于真核复制解旋酶MCM2-7的MCM2组分,其经由N末端结构域直接结合组蛋白H3-H4(href =“#bib28” =“ bib28” class =“ bibr popnode”> Ishimi等,2001 ,href="#bib16" rid="bib16" class=" bibr popnode"> Foltman等,2013 a>),以及基本的组蛋白伴侣Asf1(href="#bib23" rid="bib23" class=" bibr popnode"> Groth等人,2007b )。结构研究表明,MCM2通过屏蔽通常与DNA或组蛋白H2A / H2B结合的H3-H4表面起作用(href="#bib26" rid="bib26" class=" bibr popnode"> Huang等人,2015 < / a>,href="#bib51" rid="bib51" class=" bibr popnode">里切特等人,2015 )。组蛋白伴侣FACT(促进染色质转录)能够陪伴H2A / H2B和H3 / H4组蛋白,已被发现与酿酒酵母中的复制体一起传播(href =“#bib19” rid =“ bib19 “ class =” bibr popnode“> Gambus et al。,2006 ),并建议在叉处参与染色质的拆卸/沉积(href =”#bib16“ rid =” bib16“ class =” bibr popnode“> Foltman等,2013 ,href="#bib64" rid="bib64" class=" bibr popnode"> Yang等,2016 ,href =” #bib35“ rid =” bib35“ class =” bibr popnode“>库拉特等人,2017 )。最近的研究还表明,单链结合蛋白RPA结合组蛋白H3-H4并促进复制叉处的核小体组装(href="#bib38" rid="bib38" class=" bibr popnode"> Liu等。,2017 )。芽孢和裂变酵母的观察表明,前导聚合酶Polε在维持异染色质区域中起着作用(href =“#bib27” rid =“ bib27” class =“ bibr popnode” > Iida and Araki,2004 ,href="#bib36" rid="bib36" class=" bibr popnode"> Li等人,2011 );此功能似乎主要取决于Polε,Dpb3和Dpb4的最小亚基(href="#bib27" rid="bib27" class=" bibr popnode"> Iida和Araki,2004 ,href =“#bib25” rid =“ bib25” class =“ bibr popnode”>他等人,2017 )。 ΔDpb3和ΔDpb4酵母菌株表现出缺陷的异染色质维持性,这也与缺乏必需的复制体相关伴侣蛋白如CAF-1,Asf1和MCM2 HBD(组蛋白结合域)的菌株共享(href =“#bib55” rid =“ bib55“ class =” bibr popnode“> Singer等,1998 ,href="#bib30" rid="bib30" class=" bibr popnode"> Kaufman等,1997 ,href="#bib16" rid="bib16" class=" bibr popnode"> Foltman等人,2013 )。 Dpb3和Dpb4如何促进异染色质的维持尚不清楚。在此,我们显示了哺乳动物Polε的POLE3-POLE4辅助亚基在复制偶联的核小体组装过程中选择性地与组蛋白H3-H4结合。我们定义了POLE3-POLE4结合的机制基础,并揭示了对H3-H4的内在伴侣分子活性。在哺乳动物细胞中,POLE3或POLE4的耗尽或POLE3的C末端的去除(赋予与H3-H4的结合)直接影响复制叉处的核小体动力学。总的来说,我们的工作揭示了哺乳动物POLE3-POLE4是与复制体相关的组蛋白H3-H4分子伴侣,它在DNA复制期间的染色质维持中起着重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号