class='head no_bottom_margin' id='sec1title'>Int'/> Combining Mutational Signatures Clonal Fitness and Drug Affinity to Define Drug-Specific Resistance Mutations in Cancer
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Combining Mutational Signatures Clonal Fitness and Drug Affinity to Define Drug-Specific Resistance Mutations in Cancer
【2h】

Combining Mutational Signatures Clonal Fitness and Drug Affinity to Define Drug-Specific Resistance Mutations in Cancer

机译:结合突变签名克隆适应性和药物亲和力来定义癌症中药物特异性耐药突变。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAlthough targeted cancer therapies, for example, against kinases, hormone receptors, or hormone-synthesizing enzymes, have shown clinical success, many patients develop resistance to treatment and subsequently relapse. Second- and third-generation drugs are being developed to target these resistant mutants; however, there is a significant time span between the detection of clinically validated resistance mutations and the availability of suitably targeted treatment options. Early identification of drug-specific mutations is therefore critical and the aim of this study.Several mechanisms underlying resistance to targeted drugs have been described (), including mutations directly affecting the drug target. Such mutations may, for example, increase affinity for the endogenous co-factor ATP, thereby decreasing the relative affinity of an ATP-competitive drug. Mutations within the binding site may also alter drug-protein interactions and directly interfere with drug binding ().Several computational studies have investigated the impact of protein mutations on drug efficacy (, , , ), mainly in an antiviral or antibacterial context (, , ). However, rarely do these studies prospectively identify drug resistance mutations (, , ). In predicting mutations that render Staphylococcus aureus resistant to an antifolate antibiotic, evaluated the likely effect of possible mutations on both binding of the inhibitor and on binding of the endogenous ligand — an important aspect since any mutation that significantly abrogates the native activity of the wild-type (WT) protein is unlikely to survive selective evolutionary pressure (, , href="#bib58" rid="bib58" class=" bibr popnode">Pandurangan et al., 2017). However, Reeve et al. do not consider the likelihood of whether each mutation can be formed in bacteria.In cancer, the mutation landscape of a tumor can be characterized by the mutational signatures operating in a particular cancer type (href="#bib2" rid="bib2" class=" bibr popnode">Alexandrov et al., 2013). These signatures describe the probability of a specific base exchange within a defined trinucleotide context. Some of these signatures have been associated with known mutagenic processes, such as UV irradiation or aging, while the mechanism of others still remains elusive (href="#bib2" rid="bib2" class=" bibr popnode">Alexandrov et al., 2013). These mutagenic processes can generate a single clone harboring the disease-causing “driver mutation,” which ultimately leads to the development of cancer (href="#bib31" rid="bib31" class=" bibr popnode">Greaves and Maley, 2012). In addition, non-transforming somatic mutations, so-called passenger mutations, are randomly created. While not oncogenic per se, passenger mutations can provide the substrate for an evolutionary advantage throughout cancer progression, for example, under the selective pressure of a targeted molecular therapy, leading to drug resistance. Known drug resistance mutations have not only been detected in treatment-naive patients (href="#bib36" rid="bib36" class=" bibr popnode">Inukai et al., 2006, href="#bib66" rid="bib66" class=" bibr popnode">Roche-Lestienne et al., 2002), but also in healthy individuals (href="#bib32" rid="bib32" class=" bibr popnode">Gurden et al., 2015). This suggests that small pools of viable treatment-resistant clones can pre-exist in patients and that drug treatment puts a selection pressure on a heterogeneous cancer cell population that selects for resistant sub-clones.Each drug interacts with its biological target in a unique way, and each protein target mutation will differentially affect diverse classes of drugs. As a consequence, each compound can be expected to exhibit a unique resistance mutation profile. Three factors contribute to the probability and functional impact of a residue change: (1) the probability that the protein mutation can be generated from a DNA mutational signature (signature-driven probability), (2) whether the mutation maintains protein function and clones harboring the mutation are still viable (fitness), and (3) whether the mutation confers lower drug affinity with respect to the endogenous ligand for the target protein (affinity). href="#bib50" rid="bib50" class=" bibr popnode">Martínez-Jiménez et al. (2017) recently reported a workflow classifying potential drug resistance mutations based on Random Forest models and mutation signatures. However, the effect of mutations on the fitness of the clone was not taken into account. In addition, only single-point mutations (SPMs) were considered, despite the notable detection of double-point mutations (DPMs) in cancer patients (href="#mmc1" rid="mmc1" class=" supplementary-material">Table S1).We report an in silico cascade that sequentially evaluates the probability of generating any mutant within 5 Å of a bound ligand, the clonal fitness of each mutation, and the effect of each mutation on drug affinity in order to systematically and objectively prioritize mutations that are highly likely to arise under drug treatment. Importantly, our workflow classifies the impact of a mutation on drug affinity relative to endogenous ligand and does not rely upon accurate calculation of binding free energies; it also ranks mutations according to their likelihood of being generated in particular cancer type. The workflow (href="/pmc/articles/PMC6242700/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1 and described in detail below) is validated on a comprehensive benchmark dataset that describes the effect of nearly all possible extracellular signal-regulated kinase 2 (ERK2) missense mutations on sensitivity to the ERK2 inhibitor SCH772984 (href="#bib11" rid="bib11" class=" bibr popnode">Brenan et al., 2016). In addition, we apply the workflow to four well-established cancer targets and evaluate at least two US Food and Drug Administration-approved drugs (small molecules or biologics) per target.href="/pmc/articles/PMC6242700/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6242700_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6242700/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6242700/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1WorkflowPotential mutations are evaluated based on their predicted effect on the affinity of both the drug and endogenous ligand (orange), the fitness of the resultant clone (blue), and the requirement for triple-point mutations to generate a mutant (lime green). Resistance hotspots are identified within the remaining set of resistant mutants; these resistance hotspots are protein residues where multiple amino acid changes are predicted to lead to resistance and which therefore have a high likelihood of functional relevance. Resistant mutations at these hotspots are prioritized based on the probability that they will be generated according to the known DNA mutational signatures operating in a particular cancer type.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介尽管针对性的癌症疗法,例如针对激酶,激素受体或激素合成的疗法酶已显示出临床成功,许多患者对治疗产生抵抗力,随后复发。正在开发针对这些抗性突变体的第二代和第三代药物。然而,在临床验证的耐药性突变的检测与适当靶向治疗方案的可用性之间存在相当长的时间跨度。因此,尽早识别药物特异性突变是至关重要的,也是本研究的目的。已经描述了针对靶向药物耐药性的几种机制(包括直接影响药物靶点的突变)。这样的突变可以例如增加对内源性辅因子ATP的亲和力,从而降低与ATP竞争的药物的相对亲和力。结合位点内的突变也可能改变药物-蛋白质的相互作用并直接干扰药物结合()。许多计算研究已经研究了蛋白质突变对药物功效的影响(``,``,),主要是在抗病毒或抗菌的情况下(``,`` )。但是,这些研究很少能前瞻性地鉴定出耐药性突变(,,)。在预测可使金黄色葡萄球菌对抗叶酸抗生素产生耐药性的突变时,评估了可能的突变对抑制剂结合和对内源性配体结合的可能影响-一个重要方面,因为任何突变都会显着消除野生动植物的天然活性,类型(WT)的蛋白质不太可能在选择性进化压力下生存(,,href="#bib58" rid="bib58" class=" bibr popnode"> Pandurangan et al。,2017 )。但是,里夫等人。在癌症中,肿瘤的突变情况可以通过在特定癌症类型中起作用的突变特征来表征(href =“#bib2” rid =“ bib2 “ class =” bibr popnode“> Alexandrov等人,2013 )。这些签名描述了在定义的三核苷酸范围内进行特定碱基交换的可能性。其中一些特征与已知的诱变过程有关,例如紫外线辐射或老化,而其他特征的机理仍然难以捉摸(href="#bib2" rid="bib2" class=" bibr popnode"> Alexandrov等等,2013 )。这些诱变过程可以生成一个带有导致疾病的“驱动程序突变”的克隆,从而最终导致癌症的发展(href="#bib31" rid="bib31" class=" bibr popnode"> Greaves and Maley ,2012 )。另外,随机产生非转化的体细胞突变,即所谓的乘客突变。虽然本身不​​是致癌的,但客体突变可为整个癌症进展提供进化优势的底物,例如,在靶向分子疗法的选择性压力下,导致耐药性。不仅在未进行过治疗的患者中都发现了已知的耐药性突变(href="#bib36" rid="bib36" class=" bibr popnode"> Inukai et al。,2006 ,href = “#bib66” rid =“ bib66” class =“ bibr popnode”> Roche-Lestienne等,2002 ),但也适用于健康个体(href =“#bib32” rid =“ bib32”类=“ bibr popnode”> Gurden等人,2015 )。这表明在患者中可能会存在一小部分可行的具有治疗抗性的克隆,药物治疗给选择抗性亚克隆的异种癌细胞群体带来了选择压力,每种药物都以独特的方式与其生物学靶标相互作用,并且每种蛋白质靶标突变都会不同地影响不同种类的药物。结果,可以预期每种化合物表现出独特的抗性突变概况。残基变化的可能性和功能影响包括三个因素:(1)可以从DNA突变特征中产生蛋白质突变的可能性(签名驱动的可能性),(2)突变是否保持蛋白质功能和克隆是否具有蛋白质突变仍然是可行的(适合),以及(3)突变相对于靶蛋白的内源性配体是否赋予较低的药物亲和力(亲和力)。 href="#bib50" rid="bib50" class=" bibr popnode">Martínez-Jiménez等。 (2017)最近报道了一种基于随机森林模型和突变特征对潜在耐药性突变进行分类的工作流程。但是,没有考虑突变对克隆适应性的影响。此外,仅考虑单点突变(SPM),尽管在癌症患者中发现了双点突变(DPM)(href="#mmc1" rid="mmc1" class="Supplementary-material">表S1 )。我们报告了一个硅级联反应,可顺序评估在结合配体5Å内产生任何突变的可能性,每个突变的克隆适应性以及每个突变对药物亲和力的影响,以便系统地和客观地确定在以下情况下极有可能发生的突变药物治疗。重要的是,我们的工作流程将突变对药物亲和力的影响相对于内源性配体进行了分类,并且不依赖于结合自由能的准确计算;它还根据突变在特定癌症类型中产生的可能性对突变进行排名。工作流程(href =“ / pmc / articles / PMC6242700 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-fig1 “ co-legend-rid =“ lgnd_fig1”>图1 ,并在下面进行了详细说明)已在全面的基准数据集中得到验证,该数据集描述了几乎所有可能的细胞外信号调节激酶2(ERK2)错义突变对对ERK2抑制剂SCH772984的敏感性(href="#bib11" rid="bib11" class=" bibr popnode"> Brenan等人,2016 )。此外,我们将工作流程应用于四个公认的癌症靶标,并每个靶标评估至少两种美国食品和药物管理局批准的药物(小分子或生物制剂)。<!-fig ft0-> <!-fig mode = article f1-> href="/pmc/articles/PMC6242700/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1"> <!- fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on% 20image%20to%20zoom&p = PMC3&id = 6242700_gr1.jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC6242700/figure/fig1/?report=objectonly">打开在单独的窗口中 class =“ figpopup” href =“ / pmc / articles / PMC6242700 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob = “ ob-fig1“>图1 <!-说明a7->工作流程潜在的突变是根据其对药物和内源性配体(橙色)的亲和力的预测影响进行评估的,产生的克隆(蓝色),以及需要三点突变才能生成突变体(石灰绿色)的要求。在其余的抗性突变体中鉴定出抗性热点;这些抗性热点是蛋白质残基,其中预测多个氨基酸变化会导致抗性,因此在功能上具有高度相关性。根据根据在特定癌症类型中起作用的已知DNA突变特征会生成这些热点的可能性,对这些热点处的抗性突变进行优先排序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号