首页> 美国卫生研究院文献>Elsevier Sponsored Documents >(ADP-ribosyl)hydrolases: Structural Basis for Differential Substrate Recognition and Inhibition
【2h】

(ADP-ribosyl)hydrolases: Structural Basis for Differential Substrate Recognition and Inhibition

机译:(ADP-核糖基)水解酶:差异底物识别和抑制的结构基础。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionADP-ribosylation is a dynamic post-translational modification involved in the regulation of a wide variety of cellular processes, including DNA damage response (DDR), aging, immunity, bacterial metabolism, and many others (, , ). It is established by the stereospecific transfer of ADP-ribose (ADPr) from β-NAD+ onto a target residue, which results in the formation of an α-anomeric ADP-ribosylated amino acid and the release of nicotinamide (). In eukaryotes, this reaction is catalyzed by two distinct families of ADP-ribosyltransferases (ARTs) classified by their catalytic motifs as well as their relationship to bacterial exotoxins: (1) cholera toxin-like ARTs (ARTC) containing an R-S-E motif and (2) diphtheria toxin-like ARTs (PARPs, also called ARTDs) containing an H-Y-E motif (, ). Modification of residues containing acidic (glutamate/aspartate), basic (arginine/lysine), hydroxyl (serine), and thiol (cysteine) moieties have been described (, , ). Specificity for these residues is partially the result of distinct structural arrangements in the ART catalytic domain, with ARTCs usually catalyzing the transfer onto arginine residues and PARPs usually modifying acidic residues (, ). Recently, we have shown that for PARPs this canonical activity can be altered in the mammalian DDR through the formation of a complex of PARP1 or PARP2 with histone PARylation factor 1 (HPF1), which leads to a preference for serine modification in many proteins involved in the maintenance of genomic stability (, ). In addition, a subset of PARPs can transfer further ADPr units onto the initial modification, forming polymers of ADPr units, known as poly(ADP-ribosyl) (PAR) modification (A) (). Reversal of the bulk of PAR modification is mediated by poly(ADP-ribosyl)glycohydrolase (PARG) converting the polymer chain to a mono(ADP-ribosyl) (MAR) modification (href="#bib37" rid="bib37" class=" bibr popnode">Lin et al., 1997, href="#bib60" rid="bib60" class=" bibr popnode">Slade et al., 2011). PARG is unable to efficiently cleave the protein-linked ADPr moiety (href="#bib60" rid="bib60" class=" bibr popnode">Slade et al., 2011), which requires a number of other hydrolases. For example, linkages to glutamate/aspartate are hydrolyzed by macrodomain proteins (href="#bib24" rid="bib24" class=" bibr popnode">Jankevicius et al., 2013, href="#bib57" rid="bib57" class=" bibr popnode">Rosenthal et al., 2013, href="#bib58" rid="bib58" class=" bibr popnode">Sharifi et al., 2013), whereas linkages to arginine and serine are cleaved by ARH1 and ARH3, respectively, two members of the structurally unrelated (ADP-ribosyl)hydrolases (ARHs) family (href="#bib15" rid="bib15" class=" bibr popnode">Fontana et al., 2017, href="#bib41" rid="bib41" class=" bibr popnode">Moss et al., 1988) (href="/pmc/articles/PMC6309922/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A). In addition, ARH3 can cleave PAR chains, 1″-O-acetyl-ADPr and ADPr at the phosphorylated DNA ends, although these activities have not been confirmed in vivo so far (href="#bib42" rid="bib42" class=" bibr popnode">Mueller-Dieckmann et al., 2006, href="#bib45" rid="bib45" class=" bibr popnode">Munnur and Ahel, 2017, href="#bib49" rid="bib49" class=" bibr popnode">Ono et al., 2006).href="/pmc/articles/PMC6309922/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6309922_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6309922/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6309922/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Functional and Structural Overview of ARH1 and ARH3(A) Scheme of vertebrate ADP-ribosylation reactions. The modification of a target protein can occur as MARylation on arginine residues (orange) catalyzed by ARTCs, as well as MARylation and PARylation on glutamate/aspartate (blue) and serine (green) residues catalyzed by PARPs. Arginine de-modification is catalyzed by ARH1, PARylation is removed by PARG and to a lesser extend ARH3, MARylation on glutamate/aspartate residues is hydrolyzed by macrodomain proteins, whereas the terminal modification on serine residues is removed by ARH3.(B) Pairwise sequence identity comparison of selected ARH3 proteins. Sequence identity and similarity (in parentheses) are provided.(C) (ADP-ribosyl)hydrolase activity assessment of selected ARH3 orthologues. All ARH3s efficiently remove MARylation from the histone H3 peptide (aa 1-20) and degrade PARP1 generated PARylation to a variable extent.(D) Ribbon representation of hARH1 and LchARH3 in complex with ADPr (red) showing quasidomains A (orange), B (yellow), C (blue), and D (green) as well as the coordinated Mg2+ ions (cyan).(E) Liquorice-surface representation of hARH1 and LchARH3 (brown) in complex with ADPr (black). Residues important for the interaction are highlighted (see href="#mmc1" rid="mmc1" class=" supplementary-material">Figures S1–S3 for further details).See also href="#mmc1" rid="mmc1" class=" supplementary-material">Figures S1–S3.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介 ADP-核糖基化是一种动态的翻译后修饰,涉及多种调节细胞过程的变化,包括DNA损伤反应(DDR),衰老,免疫力,细菌代谢以及许多其他过程(,)。它是通过将ADP-核糖(ADPr)从β-NAD + 立体定向转移到目标残基上而建立的,这导致形成α-异头ADP-核糖基化氨基酸并释放出烟酰胺()。在真核生物中,该反应由两个不同的ADP-核糖基转移酶(ART)家族催化,这些家族按其催化基序及其与细菌外毒素的关系进行分类:(1)含有RSE基序的霍乱毒素样ARTs(ARTC)和(2 )含有HYE主题的白喉毒素样ART(PARP,也称为ARTD)。已经描述了含酸性(谷氨酸/天冬氨酸),碱性(精氨酸/赖氨酸),羟基(丝氨酸)和硫醇(半胱氨酸)部分的残基的修饰(,,,)。这些残基的特异性部分是ART催化域中不同结构排列的结果,ARTC通常催化转移到精氨酸残基上,而PARP则通常修饰酸性残基(,)。最近,我们已经发现,对于PARPs,可以通过形成具有组蛋白PARylation factor 1(HPF1)的PARP1或PARP2的复合物来改变哺乳动物DDR中的典型活性,从而导致许多参与该蛋白质的蛋白都需要进行丝氨酸修饰维持基因组稳定性(,)。此外,一部分PARP可以将其他ADPr单元转移到初始修饰基上,形成ADPr单元的聚合物,称为聚(ADP-核糖基)(PAR)修饰(A)()。大部分PAR修饰的逆转是通过聚(ADP-核糖基)糖基水解酶(PARG)将聚合物链转化为单(ADP-核糖基)(MAR)修饰(href =“#bib37” rid =“ bib37” class =“ bibr popnode”> Lin等,1997 ,href="#bib60" rid="bib60" class="bibr popnode"> Slade等,2011 )。 PARG无法有效裂解蛋白连接的ADPr部分(href="#bib60" rid="bib60" class=" bibr popnode"> Slade等人,2011 ),这需要大量的其他水解酶。例如,与谷氨酸/天冬氨酸的连接被大结构域蛋白水解(href="#bib24" rid="bib24" class=" bibr popnode"> Jankevicius et al。,2013 ,href =“ #bib57“ rid =” bib57“ class =” bibr popnode“> Rosenthal等人,2013 ,href="#bib58" rid="bib58" class=" bibr popnode"> Sharifi等人。 ,2013 ),而与精氨酸和丝氨酸的连接分别被ARH1和ARH3切割,而结构上不相关的(ADP-核糖基)水解酶(ARHs)家族的两个成员(href =“#bib15” rid = “ bib15” class =“ bibr popnode”> Fontana等人,2017 ,href="#bib41" rid="bib41" class=" bibr popnode"> Moss等人,1988 )(href =“ / pmc / articles / PMC6309922 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1” rid-ob =“ ob-fig1 “ co-legend-rid =” lgnd_fig1“>图1 A)。此外,ARH3可以裂解磷酸化DNA末端的PAR链,1“ -O-乙酰基-ADPr和ADPr,尽管到目前为止尚未在体内证实这些活性(href =”#bib42“ rid =” bib42“ class =“ bibr popnode”> Mueller-Dieckmann等,2006 ,href="#bib45" rid="bib45" class=" bibr popnode"> Munnur and Ahel,2017年, href="#bib49" rid="bib49" class=" bibr popnode"> Ono等人,2006 )。<!-fig ft0-> <!-fig mode = article f1 -> href="/pmc/articles/PMC6309922/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1"> <!-fig / graphic | fig / alternatives / graphic mode =“ anchred” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to% 20zoom&p = PMC3&id = 6309922_gr1.jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC6309922/figure/fig1/?report=objectonly">在单独的窗口中打开 class =“ figpopup” href =“ / pmc / articles / PMC6309922 / figure / fig1 /” target =“ figure” rid-figpop图1 <!-标题a7-> ARH1和ARH3的功能和结构概述(A)脊椎动物ADP-核糖基化反应方案。靶蛋白的修饰可发生在ARTC催化的精氨酸残基(橙色)上的MARylation以及谷氨酸/天冬氨酸(蓝色)和丝氨酸(绿色)残基上的MARylation和PARylation(PARP)。 ARH1催化精氨酸的修饰,PARG去除PARylation,ARH3延伸至较小范围,谷氨酸/天冬氨酸残基上的MARylation被大结构域蛋白水解,而丝氨酸残基的末端修饰被ARH3删除。(B)选定ARH3蛋白的成对序列同一性比较。提供了序列同一性和相似性(在括号中)。(C)对选定的ARH3直向同源物的(ADP-核糖基)水解酶活性评估。所有ARH3都能有效地去除组蛋白H3肽(aa 1-20)的MARylation并使PARP1产生的PARylation降解至不同程度。(D)hARH1和LchARH3与ADPr(红色)的复合带状表示显示了拟域A(橙色),B (黄色),C(蓝色)和D(绿色),以及配位的Mg 2 + 离子(蓝绿色)。(E)hARH1和LchARH3(棕色)在复合物中的甘草表面表示使用ADPr(黑色)。突出显示了对于交互作用重要的残基(有关更多详细信息,请参见href="#mmc1" rid="mmc1" class="Supplementary-material">图S1-S3 )。另请参见href =“ #mmc1“ rid =” mmc1“ class =” Supplementary-material“>图S1-S3 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号