首页> 美国卫生研究院文献>Elsevier Sponsored Documents >ZIC3 Controls the Transition from Naive to Primed Pluripotency
【2h】

ZIC3 Controls the Transition from Naive to Primed Pluripotency

机译:ZIC3控制从天真的多能性的过渡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionEarly embryonic development involves the transition of pluripotent embryonic stem cells through intermediate cell states into the cell lineages that initiate subsequent development events. Using defined in vitro conditions, several different states have been identified for mouse embryonic stem cells (ESCs), starting from the naive ground state and progressing through epiblast-like cells (EpiLCs), to establish an epiblast stem cell (EpiSC) state (; reviewed in ). Subsequently, EpiSCs can differentiate into the three germ layers: mesoderm, ectoderm, and endoderm. Mouse ESCs can be maintained in the naive ground state in defined media, which includes two kinase inhibitors (known as “2i”) to block the MEK/ERK and GSK3 signaling pathways (; reviewed in ). Withdrawal of 2i, allows the cells to progress to either EpiLCs or EpiSCs by altering culture conditions (, ). The naive ESCs are thought to represent a model for the pre-implantation epiblast (embryonic 3.5 [E3.5]–4.5) whereas EpiLCs or EpiSCs cells are models for the post-implantation epiblast (E5.5) ().As ESCs progress from the naive ground state, large changes are observed in their chromatin landscapes and underlying gene expression programs (, ; reviewed in ). The pluripotent state is maintained through the action of a core set of transcription factors and chromatin regulators that include the well-studied NANOG, KLF4, SOX2, and OCT4 (reviewed in ). However, comparatively less is known about the regulators controlling the transition to EpiLCs and EpiSCs. Recently, OTX2 was identified as a key transcription factor driving this transition, partly through cooperative interactions with OCT4/POU5F1 (, , ). Proteomics analysis also identified ZIC2/3 and OCT6/POU3F1 as interacting proteins for OCT4, specifically in EpiLCs (), suggesting a potential co-regulatory role for these transcription factors in this context. Further changes occur during the transition to EpiLCs, and in addition to transcriptional regulators, other proteins have been shown to play an important role during this transition such as the extracellular signaling protein, Cripto, which controls metabolic reprogramming (href="#bib20" rid="bib20" class=" bibr popnode">Fiorenzano et al., 2016).To further our understanding of the regulatory networks controlling the transition from the naive ESC state to EpiLCs, we examined the chromatin accessibility changes accompanying this early transition in mouse ESCs. We focused on areas of dynamic chromatin opening and through DNA binding motif enrichment and associated gene expression data analysis, we identified the transcription factor ZIC3 as an important regulatory transcription factor in this context. ZIC3 controls the expression of EpiLC marker genes such as Fgf5 and many of the ZIC3 target genes encode transcriptional regulators such as GRHL2, which has an important role in enhancer formation in the transition to EpiLCs. ZIC3 therefore is immediately upstream of a set of pro-differentiation regulators that work together to establish the EpiLC state.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介早期胚胎发育涉及多能胚胎干细胞通过中间细胞状态转变为细胞引发后续发展事件的血统。使用体外条件,从幼稚的基态开始发展到通过表皮样细胞(EpiLCs)建立表皮干细胞(EpiSC)状态,小鼠胚胎干细胞(ESC)处于几种不同的状态(;在中查看)。随后,EpiSC可以分化为三个胚层:中胚层,外胚层和内胚层。可以将小鼠ESC维持在纯净的原始状态下,该介质包括两种激酶抑制剂(称为“ 2i”),以阻断MEK / ERK和GSK3信号通路(参见)。撤除2i,可通过改变培养条件使细胞发展为EpiLC或EpiSC。幼稚的胚胎干细胞被认为是植入前成骨细胞的模型(胚胎3.5 [E3.5] –4.5),而EpiLCs或EpiSCs细胞是植入后成骨细胞(E5.5)的模型()。从幼稚的基态开始,观察到它们的染色质分布和潜在的基因表达程序发生了很大的变化(,;于中进行了综述)。通过一组核心的转录因子和染色质调节剂(包括经过充分研究的NANOG,KLF4,SOX2和OCT4)的作用来维持多能状态(在中进行综述)。但是,对于控制向EpiLC和EpiSC过渡的调节器知之甚少。最近,部分与OCT4 / POU5F1(,,)的协同相互作用被认为是OTX2是驱动这一转变的关键转录因子。蛋白质组学分析还确定了ZIC2 / 3和OCT6 / POU3F1是OCT4的相互作用蛋白,特别是在EpiLC中(),表明在这种情况下这些转录因子的潜在共调控作用。在过渡到EpiLC的过程中发生了进一步的变化,除转录调节因子外,还显示了其他蛋白在此过渡过程中起着重要作用,例如控制代谢重编程的细胞外信号蛋白Cripto(href =“#bib20 “ rid =“ bib20” class =“ bibr popnode”> Fiorenzano等人,2016 )。为进一步了解控制从原始ESC状态向EpiLC过渡的调控网络,我们研究了染色质可及性变化伴随着小鼠ESC的这种早期过渡。我们专注于动态染色质开放领域,并通过DNA结合基序富集和相关基因表达数据分析,我们确定了转录因子ZIC3在这种情况下是重要的调控转录因子。 ZIC3控制EpiLC标记基因(例如Fgf5)的表达,许多ZIC3靶基因编码转录调节因子(例如GRHL2),其在过渡到EpiLC的增强子形成中具有重要作用。因此,ZIC3紧接在一组共同建立EpiLC状态的促分化调节剂的上游。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号