首页> 美国卫生研究院文献>The ISME Journal >DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies
【2h】

DNA-SIP based genome-centric metagenomics identifies key long-chain fatty acid-degrading populations in anaerobic digesters with different feeding frequencies

机译:基于DNA-SIP的以基因组为中心的宏基因组学可确定厌氧消化器中具有不同进食频率的关键长链脂肪酸降解种群

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fats, oils and greases (FOG) are energy-dense wastes that can be added to anaerobic digesters to substantially increase biomethane recovery via their conversion through long-chain fatty acids (LCFAs). However, a better understanding of the ecophysiology of syntrophic LCFA-degrading microbial communities in anaerobic digesters is needed to develop operating strategies that mitigate inhibitory LCFA accumulation from FOG. In this research, DNA stable isotope probing (SIP) was coupled with metagenomic sequencing for a genome-centric comparison of oleate (C18:1)-degrading populations in two anaerobic codigesters operated with either a pulse feeding or continuous-feeding strategy. The pulse-fed codigester microcosms converted oleate into methane at over 20% higher rates than the continuous-fed codigester microcosms. Differential coverage binning was demonstrated for the first time to recover population genome bins (GBs) from DNA-SIP metagenomes. About 70% of the 13C-enriched GBs were taxonomically assigned to the Syntrophomonas genus, thus substantiating the importance of Syntrophomonas species to LCFA degradation in anaerobic digesters. Phylogenetic comparisons of 13C-enriched GBs showed that phylogenetically distinct Syntrophomonas GBs were unique to each codigester. Overall, these results suggest that syntrophic populations in anaerobic digesters can have different adaptive capacities, and that selection for divergent populations may be achieved by adjusting reactor operating conditions to maximize biomethane recovery.
机译:脂肪和油脂(FOG)是能量密集的废物,可以将其添加到厌氧消化池中,以通过长链脂肪酸(LCFA)的转化大大提高生物甲烷的回收率。但是,需要更好地了解厌氧消化器中降解同养型LCFA的微生物群落的生态生理,以开发减轻FOG抑制性LCFA积累的操作策略。在这项研究中,将DNA稳定同位素探测(SIP)与宏基因组测序相结合,对以脉冲进料或连续进料策略操作的两个厌氧共消化器中以油酸(C18:1)降解的群体进行以基因组为中心的比较。脉冲进料的共精油缩微比连续进料的共精油缩微将油酸酯转化为甲烷的速率高出20%以上。首次展示了差异覆盖分箱技术,可从DNA-SIP元基因组中回收种群基因组箱(GB)。在分类学上,大约70%富含 13 C的GB属于同食单胞菌属,因此证实了同食单胞菌对厌氧消化池中LCFA降解的重要性。富含 13 C的GB的系统发育比较表明,每个亲代间的系统发育上不同的Syntrophomonas GB是唯一的。总体而言,这些结果表明厌氧消化池中的营养种群可能具有不同的适应能力,并且可以通过调整反应器运行条件以最大程度地回收生物甲烷来选择不同种群。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号