首页> 美国卫生研究院文献>iScience >Sequential Solution Polymerization of Poly(34-ethylenedioxythiophene) Using V2O5 as Oxidant for Flexible Touch Sensors
【2h】

Sequential Solution Polymerization of Poly(34-ethylenedioxythiophene) Using V2O5 as Oxidant for Flexible Touch Sensors

机译:以V2O5为氧化剂的柔性触摸传感器按顺序溶液聚合聚(34-乙撑二氧噻吩)

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionPoly(3,4-ethylenedioxythiophene) (PEDOT) is a conjugated polymer with many attractive properties, such as good conductivity, high optical transparency in visible range, excellent flexibility, and good chemical stability. These properties render it a key component for transparent electrodes, electrochromic devices, electromagnetic shielding, etc.(, , , , ) In situ polymerization of 3,4-ethylenedioxythiophene (EDOT) monomers is an approach to obtain PEDOT films. There are generally three methods, namely, electropolymerization (EP) (), oxidative chemical vapor deposition (OCVD), and vapor phase polymerization (VPP) (, ). In the EP process, the EDOT monomer is dissolved in electrolyte and then polymerized on an electrode under electrical bias (, ). A conductive substrate is required in such a process, thus limiting the application of this method. In the OCVD process, the monomer and oxidant are delivered in vapor phase at the same time, making it possible to synthesize, deposit, and dope the conjugated polymer in a single step (, ). In contrast, VPP needs two steps: (1) forming an oxidant layer on the substrate by solution means, e.g., spin coating, dip coating, blade coating, etc. and (2) exposing the oxidant-covered substrate to monomer vapor (). In recent years, the VPP method has gained popularity in EDOT polymerization. Kim et al. first polymerized PEDOT film via VPP; they used FeCl3·6H2O as oxidant and the obtained PEDOT film exhibited a low conductivity of 1 S/cm at thickness ranging from 20 to 100 nm (). Then Winther-Jensen et al. changed the oxidant to iron (III) p-toluenesulfonate, and the conductivity exceeded 1,000 S/cm with the addition of pyridine (). After that, different weak bases such as pyridine, imidazole, and glycol-based block copolymers such as poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) and poly(ethylene glycol)-ran-poly(propylene glycol) (PEG-ran-PPG) were added to the oxidant solution to adjust the polymerization rate and to inhibit side reactions, leading to highly conductive PEDOT films (href="#bib39" rid="bib39" class=" bibr popnode">Metsik et al., 2014, href="#bib21" rid="bib21" class=" bibr popnode">Huang and Chu, 2011, href="#bib71" rid="bib71" class=" bibr popnode">Zuber et al., 2008, href="#bib13" rid="bib13" class=" bibr popnode">Fabretto et al., 2009, href="#bib14" rid="bib14" class=" bibr popnode">Fabretto et al., 2012, href="#bib43" rid="bib43" class=" bibr popnode">Ouyang et al., 2018). Notably, Sung et al. obtained single crystalline PEDOT nanowires in nanoscale channels of a mold covered with FeCl3, the average conductivity reached 7,629 S/cm, and the highest value was up to 8,797 S/cm (href="#bib9" rid="bib9" class=" bibr popnode">Cho et al., 2014). Although extremely high conductivity of PEDOT is demonstrated, the deposition rate and film homogeneity still cannot meet the industrial requirement. Therefore a faster and more controllable polymerization technique is highly desirable.In most of the redox reactions of EDOT polymerization, Fe3+ acts as the electron acceptor. However, common oxidants like FeCl3 and Fe(III) tosylate can crystallize easily, resulting in structural defects in the polymerized film (href="#bib13" rid="bib13" class=" bibr popnode">Fabretto et al., 2009, href="#bib51" rid="bib51" class=" bibr popnode">Shi et al., 2017). Vanadium pentoxide (V2O5) is known for its strong oxidizing property and high activity toward EDOT monomer (href="#bib40" rid="bib40" class=" bibr popnode">Murugan et al., 2001, href="#bib18" rid="bib18" class=" bibr popnode">Guo et al., 2015b). Zhang et al. synthesized PEDOT nanofibers using V2O5 as the oxidant at room temperature in a single step, and the conductivity was 15 S/cm, higher than that of pristine poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film (href="#bib69" rid="bib69" class=" bibr popnode">Zhang et al., 2005). V2O5 could change the morphology of PEDOT chains from granular to nanofibrillar for better electrical connectivity. Guo et al. synthesized layered V2O5/PEDOT nanowires in large scale by stirring the aqueous mixture of V2O5 powder and EDOT at room temperature (href="#bib17" rid="bib17" class=" bibr popnode">Guo et al., 2015a). V2O5 acted as both an oxidant and a template for EDOT polymerization. Therefore, V2O5 could be a good candidate for the polymerization of EDOT owing to its dual function of oxidizing and seeding template.In this work, a novel and facile method, sequential solution polymerization (SSP), is introduced to fabricate highly conductive PEDOT films in situ by solution means in high throughput. As shown in href="/pmc/articles/PMC6352564/figure/sch1/" target="figure" class="fig-table-link figpopup" rid-figpopup="sch1" rid-ob="ob-sch1" co-legend-rid="lgnd_sch1">Scheme 1, the process involves sequential deposition of a methanesulfonic acid (MSA) solution of V2O5 and 2,6-di-tert-butylpyridine (DTBP) as well as an acetonitrile (MeCN) solution of EDOT monomers (href="#bib4" rid="bib4" class=" bibr popnode">Benoit et al., 1988, href="#bib3" rid="bib3" class=" bibr popnode">Bashir et al., 2013). The whole process can be completed within a minute. The electrical conductivity of the PEDOT film can reach 1,420 S/cm, with an average value around 1,333 S/cm. Compared with the widely used commercial PEDOT:PSS (PH1000, Heraeus GmbH), the SSP PEDOT film has better crystallinity and higher doping level. Characterizations suggest that the SSP PEDOT films have comparable charge carrier mobility as PH1000, but three orders of magnitude higher carrier concentrations than PH1000. In addition, this process is compatible with large-scale printing techniques. A large-area (15 × 12 cm) PEDOT film is deposited successfully on polyethylene terephthalate (PET) film, and a low sheet resistance of 81 Ω/sq was obtained. The flexible SSP PEDOT film was applied to capacitive touch sensor, which showed favorable touch function and still worked well after folding it with a bending radius less than 1 mm. This new polymerization route paves the way to scalable deposition of conductive and homogeneous PEDOT films on flexible substrate.href="/pmc/articles/PMC6352564/figure/sch1/" target="figure" rid-figpopup="sch1" rid-ob="ob-sch1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6352564_sc1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6352564/figure/sch1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6352564/figure/sch1/" target="figure" rid-figpopup="sch1" rid-ob="ob-sch1">Scheme 1Synthesis of PEDOT Film via Sequential Solution Polymerization (SSP)Schematic diagram of the synthesis procedure of PEDOT film and chemical structure of methanesulfonic acid (MSA), vanadium pentoxide (V2O5), 2,6-di-tert-butylpyridine (DTBP), 3,4-ethylenedioxythiophene (EDOT), and its polymer PEDOT.
机译:<!-fig ft0-> <!-fig @ position =“ position” anchor“ == f4-> <!-fig mode =” anchred“ f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介聚(3,4-乙撑二氧噻吩)(PEDOT)是一种具有许多引人注目的共轭聚合物性能,例如良好的导电性,可见光范围内的高光学透明性,出色的柔韧性和良好的化学稳定性。这些特性使其成为透明电极,电致变色器件,电磁屏蔽等的关键组件。(,,,,)3,4-乙撑二氧噻吩(EDOT)单体的原位聚合是获得PEDOT膜的一种方法。通常有三种方法,即电聚合(EP)(),氧化化学气相沉积(OCVD)和气相聚合(VPP)(,)。在EP工艺中,将EDOT单体溶解在电解质中,然后在电偏压(,)下在电极上聚合。在这样的过程中需要导电基板,因此限制了该方法的应用。在OCVD工艺中,单体和氧化剂是同时以气相形式输送的,因此可以在一个步骤中合成,沉积和掺杂共轭聚合物。相比之下,VPP需要两个步骤:(1)通过旋涂,浸涂,刮涂等溶液方法在基材上形成氧化剂层;(2)将覆盖氧化剂的基材暴露于单体蒸汽中() 。近年来,VPP方法在EDOT聚合中得到普及。金等。首先通过VPP聚合PEDOT薄膜;他们使用FeCl3·6H2O作为氧化剂,所获得的PEDOT膜在20至100nm()的厚度下显示出1 S / cm的低电导率。然后是Winther-Jensen等人。将氧化剂改为对甲苯磺酸铁(III),并添加吡啶(),电导率超过1,000 S / cm。之后,使用不同的弱碱,例如吡啶,咪唑和基于乙二醇的嵌段共聚物,例如聚(乙二醇)-嵌段-聚(丙二醇)-嵌段-聚(乙二醇)(PEG-PPG-PEG)和聚将(乙二醇)-ran-聚(丙二醇)(PEG-ran-PPG)添加到氧化剂溶液中以调节聚合速率并抑制副反应,从而形成高导电性PEDOT膜(href =“#bib39 “ rid =” bib39“ class =” bibr popnode“> Metsik等人,2014 ,href="#bib21" rid="bib21" class=" bibr popnode"> Huang and Chu,2011年< / a>,href="#bib71" rid="bib71" class=" bibr popnode">祖伯等人,2008 ,href =“#bib13” rid =“ bib13” class = “ bibr popnode”> Fabretto等,2009 ,href="#bib14" rid="bib14" class=" bibr popnode"> Fabretto等,2012 ,href =“#bib43” rid =“ bib43” class =“ bibr popnode”>欧阳等人,2018 )。值得注意的是,Sung等。在覆盖有FeCl3的模具的纳米级通道中获得单晶PEDOT纳米线,平均电导率达到7,629 S / cm,最高值达到8,797 S / cm(href =“#bib9” rid =“ bib9”类=“ bibr popnode”> Cho等人,2014 )。尽管证明了PEDOT的电导率极高,但沉积速率和膜均匀性仍不能满足工业要求。因此,迫切需要一种更快,更可控的聚合技术。在EDOT聚合的大多数氧化还原反应中,Fe 3 + 充当电子受体。但是,常见的氧化剂,例如FeCl3和Fe(III)的甲苯磺酸盐,很容易结晶,导致聚合膜中出现结构缺陷(href="#bib13" rid="bib13" class=" bibr popnode"> Fabretto等人, 2009 ,href="#bib51" rid="bib51" class=" bibr popnode"> Shi等人,2017 )。五氧化二钒(V2O5)以其强氧化性和对EDOT单体的高活性而闻名(href="#bib40" rid="bib40" class=" bibr popnode"> Murugan et al。,2001 , href="#bib18" rid="bib18" class=" bibr popnode"> Guo et al。,2015b )。张等。以V2O5为氧化剂在室温下一步一步合成PEDOT纳米纤维,电导率为15 S / cm,高于原始的聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)膜的电导率( href="#bib69" rid="bib69" class=" bibr popnode"> Zhang等人,2005 )。 V2O5可以将PEDOT链的形态从颗粒状改变为纳米纤维状,以获得更好的电连接性。郭等人通过在室温下搅拌V2O5粉末和EDOT的水性混合物来大规模合成层状V2O5 / PEDOT纳米线(Guo et al。,2015a a href =“#bib17” rid =“ bib17” class =“ bibr popnode”> Gu < / a>)。 V2O5既是氧化剂又是EDOT聚合的模板。因此,由于V 2 O 5 具有氧化和接种模板的双重功能,因此可能是EDOT聚合的良好候选者。引入了一种新颖且简便的方法,即顺序溶液聚合(SSP),以高通量通过溶液方法原位制备高导电性PEDOT薄膜。如href =“ / pmc / articles / PMC6352564 / figure / sch1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ sch1” rid-ob =“ ob-sch1 “ co-legend-rid =“ lgnd_sch1”>方案1 ,该过程涉及顺序沉积V 2 O 5 的甲磺酸(MSA)溶液和EDOT单体的2,6-二叔丁基吡啶(DTBP)以及乙腈(MeCN)溶液(href="#bib4" rid="bib4" class=" bibr popnode"> Benoit等。 ,1988 ,href="#bib3" rid="bib3" class=" bibr popnode"> Bashir等人,2013 )。整个过程可以在一分钟内完成。 PEDOT膜的电导率可以达到1,420 S / cm,平均值约为1,333 S / cm。与广泛使用的商用PEDOT:PSS(PH100​​0,Heraeus GmbH)相比,SSP PEDOT膜具有更好的结晶度和更高的掺杂水平。特征表明,SSP PEDOT膜具有与PH100​​0相当的电荷载流子迁移率,但载流子浓度比PH100​​0高三个数量级。另外,该过程与大规模印刷技术兼容。大面积(15×12 cm)的PEDOT膜成功地沉积在聚对苯二甲酸乙二醇酯(PET)膜上,并获得了81Ω/ sq的低薄层电阻。柔性SSP PEDOT膜被应用于电容式触摸传感器,该触摸屏显示出良好的触摸功能,并且以小于1毫米的弯曲半径折叠后仍能很好地工作。这一新的聚合途径为在柔性基板上可扩展地沉积导电性和均质PEDOT薄膜铺平了道路。<!-fig ft0-> <!-fig mode = article f1-> href =“ / pmc / articles / PMC6352564 / figure / sch1 /“ target =” figure“ rid-figpopup =” sch1“ rid-ob =” ob-sch1“> <!-fig / graphic | fig / fig / alternatives / graphic mode =” anchored“ m1- -> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to%20zoom&p = PMC3&id = 6352564_sc1.jpg” target =“ tileshopwindow “> target="object" href="/pmc/articles/PMC6352564/figure/sch1/?report=objectonly">在单独的窗口中打开 class = “ figpopup” href =“ / pmc / articles / PMC6352564 / figure / sch1 /” target =“ figure” rid-figpopup =“ sch1” rid-ob =“ ob-sch1”>方案1 <!-标题a7->通过顺序溶液聚合(SSP)合成PEDOT膜的示意图PEDOT膜的合成过程示意图以及甲磺酸(MSA),五氧化二钒(V 2 O < sub> 5 ),2,6-二叔丁基吡啶(DTBP),3,4-乙撑二氧噻吩(EDOT)及其聚合物PEDOT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号