首页> 美国卫生研究院文献>iScience >Switching Co/N/C Catalysts for Heterogeneous Catalysis and Electrocatalysis by Controllable Pyrolysis of Cobalt Porphyrin
【2h】

Switching Co/N/C Catalysts for Heterogeneous Catalysis and Electrocatalysis by Controllable Pyrolysis of Cobalt Porphyrin

机译:钴卟啉可控热解转换Co / N / C催化剂用于多相催化和电催化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionCatalysis, which can accelerate the speed of chemical reactions by changing the reaction pathway and lowering the activation energy, plays a crucial role in diverse fields, such as electrochemical energy conversion (, , , , ), petrochemical industry (), organic synthesis chemistry (, , ), and living systems (). Particularly, electrocatalysis for energy conversion and heterogeneous catalysis for molecule transformation have received extensive attention, owing to their great application potential and high fundamental research value (, , , ). Currently, the most effective catalysts for these reactions are generally precious metals and their alloys or complexes (, href="#bib27" rid="bib27" class=" bibr popnode">Suzuki, 2011, href="#bib22" rid="bib22" class=" bibr popnode">Lyons and Sanford, 2010). However, the prohibitive cost and scarcity of precious metals hinder their widespread technological use and therefore have spurred many interests in developing non-precious metal catalysts (NPMCs) with earth-abundant elements for these catalytic processes (href="#bib14" rid="bib14" class=" bibr popnode">Jiao et al., 2015, href="#bib8" rid="bib8" class=" bibr popnode">He et al., 2016).Pyrolyzed metalitrogen/carbon (M/N/C, M = Fe, Co, Ni, etc.) compounds, typical NPMCs, exhibit excellent catalytic performance for various electrochemical processes, particularly for the oxygen reduction reaction (ORR) (href="#bib4" rid="bib4" class=" bibr popnode">Bezerra et al., 2008, href="#bib5" rid="bib5" class=" bibr popnode">Chen et al., 2011, href="#bib12" rid="bib12" class=" bibr popnode">Jaouen et al., 2011, href="#bib15" rid="bib15" class=" bibr popnode">Lefèvre et al., 2009, href="#bib30" rid="bib30" class=" bibr popnode">Wu et al., 2011a, href="#bib29" rid="bib29" class=" bibr popnode">Wang et al., 2017, href="#bib6" rid="bib6" class=" bibr popnode">Chung et al., 2017). It is found that the electrocatalytic performance of M/N/C catalysts is strongly dependent on the intrinsic nature of M-Nx active sites, numbers of exposed active sites, porous structure, and electrical conductivity (href="#bib12" rid="bib12" class=" bibr popnode">Jaouen et al., 2011, href="#bib16" rid="bib16" class=" bibr popnode">Liang et al., 2013, href="#bib32" rid="bib32" class=" bibr popnode">Wu et al., 2015). Based on these in-depth understanding, now the rationally prepared M/N/C catalysts can compete with platinum-based catalysts in acidic medium and even surpass platinum-based counterparts in alkaline medium for ORR (href="#bib29" rid="bib29" class=" bibr popnode">Wang et al., 2017, href="#bib6" rid="bib6" class=" bibr popnode">Chung et al., 2017, href="#bib16" rid="bib16" class=" bibr popnode">Liang et al., 2013, href="#bib35" rid="bib35" class=" bibr popnode">Yin et al., 2016). The great success of M/N/C catalysts in eletrocatalysis encourages considerable research works in employing these NPMCs for heterogeneous catalysis in various organic reactions (href="#bib8" rid="bib8" class=" bibr popnode">He et al., 2016, href="#bib11" rid="bib11" class=" bibr popnode">Jagadeesh et al., 2017, href="#bib18" rid="bib18" class=" bibr popnode">Liu et al., 2016a, href="#bib19" rid="bib19" class=" bibr popnode">Liu et al., 2016b, href="#bib20" rid="bib20" class=" bibr popnode">Liu et al., 2017, href="#bib37" rid="bib37" class=" bibr popnode">Zhou et al., 2017), including selective oxidation (href="#bib9" rid="bib9" class=" bibr popnode">Jagadeesh et al., 2013a), selective hydrogenation (href="#bib10" rid="bib10" class=" bibr popnode">Jagadeesh et al., 2013b), epoxidation (href="#bib1" rid="bib1" class=" bibr popnode">Banerjee et al., 2014), oxidative dehydrogenation (href="#bib7" rid="bib7" class=" bibr popnode">Cui et al., 2015), reductive amination (href="#bib11" rid="bib11" class=" bibr popnode">Jagadeesh et al., 2017), hydrogenative coupling of nitroarenes, and C-C coupling reactions (href="#bib18" rid="bib18" class=" bibr popnode">Liu et al., 2016a, href="#bib36" rid="bib36" class=" bibr popnode">Zhang et al., 2015). In spite of these progresses, the understanding of structure-performance relationship of M/N/C catalysts for heterogeneous catalysis is very limited, compared with that for electrocatalysis. The identification of the difference in designing and optimizing M/N/C materials for electrocatalysis and heterogeneous catalysis is therefore urgently necessary for developing high-performance M/N/C catalysts for various organic reactions.Generally, to boost electrocatalysis, high pyrolysis temperature is needed to endow the M/N/C materials with high electrical conductivity for efficient electron transport from the active centers within the catalysts to the electrode (href="#bib4" rid="bib4" class=" bibr popnode">Bezerra et al., 2008, href="#bib12" rid="bib12" class=" bibr popnode">Jaouen et al., 2011). Nevertheless, such long-range electron transport is absent in the heterogeneous catalysis for organic reactions (href="#bib8" rid="bib8" class=" bibr popnode">He et al., 2016). This seems to suggest that the optimal M/N/C materials for heterogeneous catalysis should be prepared at a lower temperature than that for electrocatalysis, as high-temperature pyrolysis would inevitably destroy the highly active single-atom M-Nx active sites to form less-active metallic nanoparticles. To identify the difference in optimizing the M/N/C catalysts for electrocatalysis and heterogeneous catalysis, herein we develop a group of mesoporous Co/N/C materials, ranging from polymerized cobalt porphyrin to Co/N-doped carbons, which are prepared by the pyrolysis of cobalt porphyrin with silica nanoparticle templates under different temperatures and studied for both heterogeneous catalysis in organic reactions and electrocatalysis in a comparative perspective.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介催化作用,它可以通过改变反应途径并降低化学反应速度来加快化学反应的速度。活化能在各种领域中起着至关重要的作用,例如电化学能转化(````,),石化工业(),有机合成化学(``)和生物系统)。特别是,用于能量转换的电催化和用于分子转化的非均相催化由于其巨大的应用潜力和较高的基础研究价值而受到广泛关注。目前,对这些反应最有效的催化剂通常是贵金属及其合金或络合物(,href="#bib27" rid="bib27" class=" bibr popnode"> Suzuki,2011 ,href =“#bib22” rid =“ bib22” class =“ bibr popnode”>里昂和桑福德,2010年)。但是,贵金属的过高成本和稀缺性阻碍了其广泛的技术应用,因此激发了人们的兴趣,开发了用于这些催化过程的具有土元素的非贵金属催化剂(NPMC)(href =“#bib14” =“ bib14” class =“ bibr popnode”> Jiao等人,2015 ,href="#bib8" rid="bib8" class=" bibr popnode">他等人,2016 Bezerra等人,2008 ,href =“#bib5” rid =“ bib5” class =“ bibr popnode“> Chen等,2011 ,href="#bib12" rid="bib12" class=" bibr popnode"> Jaouen等,2011 ,href =” #bib15“ rid =” bib15“ class =” bibr popnode“>Lefèvre等,2009 ,href="#bib30" rid="bib30" class=" bibr popnode"> Wu等。 ,2011a ,hr ef =“#bib29” rid =“ bib29” class =“ bibr popnode”> Wang等人,2017 ,href="#bib6" rid="bib6" class=" bibr popnode">中等,2017 )。发现M / N / C催化剂的电催化性能在很大程度上取决于M-Nx活性位点的固有性质,暴露的活性位点数,多孔结构和电导率(href =“#bib12” =“ bib12” class =“ bibr popnode”> Jaouen等人,2011 ,href="#bib16" rid="bib16" class=" bibr popnode"> Liang等人,2013 ,href="#bib32" rid="bib32" class=" bibr popnode"> Wu等人,2015 )。基于这些深入的了解,现在合理制备的M / N / C催化剂可以与酸性介质中的铂基催化剂竞争,甚至可以超越碱性介质中的铂基催化剂获得ORR(href =“#bib29” =“ bib29” class =“ bibr popnode”> Wang等人,2017 ,href="#bib6" rid="bib6" class=" bibr popnode"> Chung等人,2017 ,href="#bib16" rid="bib16" class=" bibr popnode">梁等人,2013 ,href =“#bib35” rid =“ bib35” class =“ bibr popnode“> Yin等人,2016 )。 M / N / C催化剂在电催化领域的巨大成功鼓励了将这些NPMC用于各种有机反应中的非均相催化方面的大量研究工作(href="#bib8" rid="bib8" class=" bibr popnode">他等等,2016 ,href="#bib11" rid="bib11" class=" bibr popnode"> Jagadeesh等人,2017 ,href =“#bib18” rid = “ bib18” class =“ bibr popnode”>刘等人,2016a ,href="#bib19" rid="bib19" class=" bibr popnode">刘等人,2016b ,href="#bib20" rid="bib20" class=" bibr popnode">刘等人,2017 ,href =“#bib37” rid =“ bib37” class =“ bibr popnode“> Zhou等人,2017 ),包括选择性氧化(href="#bib9" rid="bib9" class=" bibr popnode"> Jagadeesh等人,2013a ) ,选择性氢化(href="#bib10" rid="bib10" class=" bibr popnode"> Jagadeesh等人,2013b ),环氧化(href =“#bib1” rid =“ bib1 “ class =” bibr popnode“> Banerjee等人,2014 ),氧化脱氢(href =”#bib7“ rid =” bib7“ class =” bibr popn ode“> Cui等人,2015 ),还原胺化(href="#bib11" rid="bib11" class=" bibr popnode"> Jagadeesh等人,2017 ),硝基芳烃的氢化偶联和CC偶联反应(href="#bib18" rid="bib18" class=" bibr popnode"> Liu et al。,2016a ,href =“#bib36” rid =“ bib36” class =“ bibr popnode”> Zhang等人,2015 )。尽管取得了这些进展,但对用于非均相催化的M / N / C催化剂的结构-性能关系的理解仍然非常有限。,与电催化相比。因此,为开发用于各种有机反应的高性能M / N / C催化剂,迫切需要识别出在设计和优化用于电催化和非均相催化的M / N / C材料方面的差异。需要使M / N / C材料具有高电导率,以实现有效的电子从催化剂中的活性中心到电极的传输(href="#bib4" rid="bib4" class=" bibr popnode"> Bezerra等,2008 ,href="#bib12" rid="bib12" class=" bibr popnode"> Jaouen等,2011 )。然而,在有机反应的非均相催化中却没有这种远程电子传输(href="#bib8" rid="bib8" class=" bibr popnode"> He et al。,2016 )。这似乎表明,用于多相催化的最佳M / N / C材料应在比用于电催化的温度更低的温度下制备,因为高温热解不可避免地会破坏高活性的单原子M-Nx活性位,从而形成较少的M / N / C材料。活性金属纳米粒子。为了确定在优化M / N / C催化剂用于电催化和非均相催化方面的差异,本文中我们开发了一组介孔Co / N / C材料,从聚合钴卟啉到Co / N掺杂碳,其制备方法如下:用二氧化硅纳米粒子模板在不同温度下热解钴卟啉,并从比较的角度研究了有机反应中的非均相催化和电催化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号