首页> 美国卫生研究院文献>iScience >Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite
【2h】

Multi-Element Topochemical-Molten Salt Synthesis of One-Dimensional Piezoelectric Perovskite

机译:一维压电钙钛矿的多元素拓扑化学-熔融盐合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionOne-dimensional (1D) micro-nanomaterials have fascinated wide interest owing to their 2D confinement structure and exotic mechanical, electrical, and optical properties (, , , , , , , , , , , ). For flexible electronic devices (, , , href="#bib46" rid="bib46" class=" bibr popnode">Yang et al., 2012a, href="#bib47" rid="bib47" class=" bibr popnode">Yang et al., 2012b, href="#bib48" rid="bib48" class=" bibr popnode">Yang et al., 2012c), which exhibit great significance for viable economic growth and the enhancement of human quality of life, the 1D materials are highly desirable, and a wide range of 1D materials-based flexible devices such as field-effect transistors (href="#bib31" rid="bib31" class=" bibr popnode">Qing et al., 2014), flexible display devices (href="#bib38" rid="bib38" class=" bibr popnode">Wang et al., 2017), flexible photodetectors (href="#bib58" rid="bib58" class=" bibr popnode">Zhou et al., 2018), flexible sensors (href="#bib10" rid="bib10" class=" bibr popnode">Deutz et al., 2017, href="#bib33" rid="bib33" class=" bibr popnode">Rim et al., 2016), and flexible energy storage devices (href="#bib13" rid="bib13" class=" bibr popnode">Gao et al., 2016, href="#bib28" rid="bib28" class=" bibr popnode">Park et al., 2017, href="#bib9" rid="bib9" class=" bibr popnode">Deng et al., 2018, href="#bib15" rid="bib15" class=" bibr popnode">Guo et al., 2012) have been demonstrated to show superior performance than their counterparts with arbitrary shapes.Perovskite materials, owing to their applications in piezoelectric, ferroelectric, solar cells, and other fields, arouse a research boom (href="#bib5" rid="bib5" class=" bibr popnode">Burschka et al., 2013, href="#bib1" rid="bib1" class=" bibr popnode">Abdi-Jalebi et al., 2018, href="#bib3" rid="bib3" class=" bibr popnode">Becker et al., 2018, href="#bib8" rid="bib8" class=" bibr popnode">Christians et al., 2018, href="#bib11" rid="bib11" class=" bibr popnode">Domanski et al., 2018, href="#bib54" rid="bib54" class=" bibr popnode">Zhang et al., 2018a, href="#bib55" rid="bib55" class=" bibr popnode">Zhang et al., 2018b, href="#bib49" rid="bib49" class=" bibr popnode">Yang et al., 2019, href="#bib40" rid="bib40" class=" bibr popnode">Wu et al., 2012a, href="#bib41" rid="bib41" class=" bibr popnode">Wu et al., 2012b). The structure of perovskite materials is mainly ABO3-type of cubic or pseudo cubic phase. Generally, the shape of crystalline particles depends on their intrinsic structure, which means that materials with cubic phase usually form isotropic particles (href="#bib29" rid="bib29" class=" bibr popnode">Pribosic et al., 2005). Meanwhile, owing to the demand for various properties, A-sites and B-sites of perovskites are doped with multi-elements mainly via solid-state method (href="#bib57" rid="bib57" class=" bibr popnode">Zheng et al., 2018, href="#bib42" rid="bib42" class=" bibr popnode">Wu et al., 2016, href="#bib30" rid="bib30" class=" bibr popnode">Qin et al., 2016, href="#bib21" rid="bib21" class=" bibr popnode">Li et al., 2018, href="#bib22" rid="bib22" class=" bibr popnode">Liu et al., 2018). 1D perovskites materials, because of their unique electronic, nonlinear optical probe and mechanical properties, have potential in various fields (href="#bib32" rid="bib32" class=" bibr popnode">Ren et al., 2010, href="#bib25" rid="bib25" class=" bibr popnode">Nakayama et al., 2007, href="#bib14" rid="bib14" class=" bibr popnode">Gao et al., 2018, href="#bib46" rid="bib46" class=" bibr popnode">Yang et al., 2012a, href="#bib47" rid="bib47" class=" bibr popnode">Yang et al., 2012b, href="#bib48" rid="bib48" class=" bibr popnode">Yang et al., 2012c, href="#bib40" rid="bib40" class=" bibr popnode">Wu et al., 2012a, href="#bib41" rid="bib41" class=" bibr popnode">Wu et al., 2012b). To further improve performance, it is critical to achieve 1D multi-perovskite materials, which can incorporate 1D structural design into perovskites (href="#bib52" rid="bib52" class=" bibr popnode">Zhai et al., 2018, href="#bib35" rid="bib35" class=" bibr popnode">Sun et al., 2016, href="#bib24" rid="bib24" class=" bibr popnode">Meng et al., 2017, href="#bib19" rid="bib19" class=" bibr popnode">Li et al., 2009, href="#bib7" rid="bib7" class=" bibr popnode">Cheng et al., 2013); however, the preparation of 1D perovskites with multi-doping of A-sites and B-sites at large scale is still a great challenge. At present, only a few synthesis methods of 1D ABO3 perovskites are reported, which mainly focus on the preparation of A-sites or B-sites as a single element, such as solvothermal method (href="#bib52" rid="bib52" class=" bibr popnode">Zhai et al., 2018), hydrothermal method (href="#bib25" rid="bib25" class=" bibr popnode">Nakayama et al., 2007), reprecipitation method (href="#bib35" rid="bib35" class=" bibr popnode">Sun et al., 2016), sol-gel method (href="#bib24" rid="bib24" class=" bibr popnode">Meng et al., 2017), and molten salt method (href="#bib19" rid="bib19" class=" bibr popnode">Li et al., 2009, href="#bib7" rid="bib7" class=" bibr popnode">Cheng et al., 2013), whereas it is difficult to control the multicomponent composition of perovskites at A-sites and B-sites with these methods.Perovskite niobate is considered as one of the most competitive lead-free materials to replace lead-bearing perovskite because of its excellent piezoelectric and ferroelectric properties and suitable Curie temperature (href="#bib34" rid="bib34" class=" bibr popnode">Saito et al., 2004, href="#bib54" rid="bib54" class=" bibr popnode">Zhang et al., 2018a, href="#bib55" rid="bib55" class=" bibr popnode">Zhang et al., 2018b, href="#bib44" rid="bib44" class=" bibr popnode">Xu et al., 2016). Herein, we proposed a simple two-step method to synthesize 1D perovskite-type niobate based on a kind of Multi-element Topochemical-Molten Salt (MTMS) method. The key to this approach was that, using 1D anisotropic non-perovskite-type niobate with multi-“B-sites” element as template, large quantities of 1D morphology of perovskite materials at the boundary of quasi-isomorphic phase with controlling multi-doping A-sites and B-sites could be achieved. Accordingly, for the first time, we synthesized the rod-like K2(Nb0.94Sb0.06)8O21 and proposed the mechanism of its derivation into perovskite-type multicomponent niobate products. Furthermore, flexible piezoelectric device (FPD) with planar orientation of rod-like product was prepared. At the same degree of bending, the output voltage was nearly 600% compared with that of the granular material of similar component. This strategy could be extended to the synthesis of large-scale other 1D multi-perovskite materials, which were expected to be widely used in flexible electronics, sensor devices, and energy storage.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介一维(1D)微型纳米材料因其二维限制而引起了广泛关注结构和特殊的机械,电气和光学特性(,,,,,,,,,,,)。对于柔性电子设备(,,,,href="#bib46" rid="bib46" class=" bibr popnode"> Yang et al。,2012a ,href =“#bib47” rid =“ bib47“ class =” bibr popnode“>杨等人,2012b ,href="#bib48" rid="bib48" class=" bibr popnode">杨等人,2012c ),对于实现可行的经济增长和提高人类生活质量具有重要意义,因此非常需要一维材料以及各种基于一维材料的柔性器件,例如场效应晶体管(href =“# bib31“ rid =” bib31“ class =” bibr popnode“> Qing等人,2014 ),灵活的显示设备(href="#bib38" rid="bib38" class=" bibr popnode"> Wang等人,2017 ),柔性光电探测器(href="#bib58" rid="bib58" class=" bibr popnode"> Zhou等人,2018 ),柔性传感器( href="#bib10" rid="bib10" class=" bibr popnode">道依茨等人,2017 ,href =“#bib33” rid =“ bib33” class =“ bibr popnode” > Rim等人,2016 )和灵活的储能设备(href =“#bib13”摆脱=“ bib13” class =“ bibr popnode”>高等人,2016 ,href="#bib28" rid="bib28" class=" bibr popnode">公园等人,2017 ,href="#bib9" rid="bib9" class=" bibr popnode">邓等人,2018 ,href =“#bib15” rid =“ bib15” class =“ bibr popnode“> Guo等人,2012 )已被证明比任意形状的同类产品都具有更好的性能。钙钛矿材料由于其在压电,铁电,太阳能电池等领域的应用而引起了人们的关注。研究热潮(href="#bib5" rid="bib5" class=" bibr popnode"> Burschka et al。,2013 ,href =“#bib1” rid =“ bib1” class =“ bibr popnode“> Abdi-Jalebi等人,2018 ,href="#bib3" rid="bib3" class=" bibr popnode">贝克尔等人,2018 ,href =“#bib8” rid =“ bib8” class =“ bibr popnode”>基督徒等人,2018 ,href="#bib11" rid="bib11" class=" bibr popnode"> Domanski et al。,2018 ,href="#bib54" rid="bib54" class=" bibr popnode"> Zhang et al。,2018a ,href =“#bib55” rid =“ bib55” cl ass =“ bibr popnode”> Zhang等人,2018b ,href="#bib49" rid="bib49" class=" bibr popnode"> Yang等人,2019 ,< a href =“#bib40” rid =“ bib40” class =“ bibr popnode”> Wu等人,2012a ,href="#bib41" rid="bib41" class=" bibr popnode"> Wu et al。,2012b )。钙钛矿材料的结构主要是ABO3型立方相或准立方相。通常,结晶颗粒的形状取决于其固有结构,这意味着具有立方相的材料通常会形成各向同性的颗粒(href="#bib29" rid="bib29" class=" bibr popnode"> Pribosic等, 2005 )。同时,由于对各种性能的需求,钙钛矿的A部位和B部位主要通过固态方法掺杂了多元素(href =“#bib57” rid =“ bib57” class =“ bibr popnode “> Zheng等人,2018 ,href="#bib42" rid="bib42" class=" bibr popnode">吴等人,2016 ,href =”# bib30“ rid =” bib30“ class =” bibr popnode“>秦等人,2016 ,href="#bib21" rid="bib21" class=" bibr popnode">李等人, 2018 ,href="#bib22" rid="bib22" class=" bibr popnode"> Liu等人,2018 )。一维钙钛矿材料由于其独特的电子,非线性光学探针和机械性能,在各个领域都有潜力(href="#bib32" rid="bib32" class=" bibr popnode"> Ren等,2010 < / a>,href="#bib25" rid="bib25" class=" bibr popnode">中山等人,2007 ,href =“#bib14” rid =“ bib14” class = “ bibr popnode”> Gao等人,2018 ,href="#bib46" rid="bib46" class=" bibr popnode"> Yang等人,2012a ,href =“#bib47” rid =“ bib47” class =“ bibr popnode”> Yang等人,2012b ,href="#bib48" rid="bib48" class=" bibr popnode"> Yang等al。,2012c ,href="#bib40" rid="bib40" class=" bibr popnode"> Wu等人,2012a ,href =“#bib41” rid = “ bib41” class =“ bibr popnode”> Wu等人,2012b )。为了进一步提高性能,获得一维多钙钛矿材料至关重要,该材料可以将一维结构设计纳入钙钛矿中(href="#bib52" rid="bib52" class=" bibr popnode"> Zhai等,, 2018 ,href="#bib35" rid="bib35" class=" bibr popnode"> Sun et al。,2016 ,href =“#bib24” rid =“ bib24” class =“ bibr popnode”>孟等人,2017年,href="#bib19" rid="bib19" class=" bibr popnode">李等人,2009 ,href =“#bib7” rid =“ bib7” class =“ bibr popnode “> Cheng等人,2013 );然而,大规模掺杂A位和B位的一维钙钛矿仍然是一个巨大的挑战。目前,仅报道了几种一维ABO3钙钛矿的合成方法,这些方法主要集中于单一位点的A位或B位的制备,例如溶剂热法(href =“#bib52” rid =“ bib52“ class =” bibr popnode“> Zhai等人,2018 ),水热法(href="#bib25" rid="bib25" class=" bibr popnode">中山等人,2007年) ),沉淀法(href="#bib35" rid="bib35" class=" bibr popnode"> Sun等人,2016 ),溶胶-凝胶法(href = “#bib24” rid =“ bib24” class =“ bibr popnode”> Meng等人,2017 )和熔融盐方法(href =“#bib19” rid =“ bib19” class =“ bibr popnode“> Li等,2009 ,href="#bib7" rid="bib7" class=" bibr popnode"> Cheng等,2013 ),但很难通过这些方法来控制A部位和B部位的钙钛矿的多组分组成。铌酸钙钛矿由于其出色的压电体,被认为是替代含铅钙钛矿的最具竞争力的无铅材料之一。 ic和铁电特性以及合适的居里温度(href="#bib34" rid="bib34" class=" bibr popnode"> Saito等人,2004 ,href =“#bib54” rid = “ bib54” class =“ bibr popnode”> Zhang等人,2018a ,href="#bib55" rid="bib55" class=" bibr popnode"> Zhang等人,2018b ,href="#bib44" rid="bib44" class=" bibr popnode">徐等人,2016 )。在此,我们提出了一种基于多元素拓扑化学熔融盐(MTMS)方法合成一维钙钛矿型铌酸盐的简单两步法。该方法的关键在于,以带有多个“ B-位”元素的一维各向异性非钙钛矿型铌酸盐为模板,通过控制多掺杂,在准同晶相边界处大量的钙钛矿材料的一维形态。可以实现A站点和B站点。因此,我们首次合成了棒状K2(Nb0.94Sb0.06)8O21,并提出了将其衍生为钙钛矿型多组分铌酸盐产品的机理。此外,制备了具有棒状产品的平面取向的柔性压电装置(FPD)。在相同的弯曲度下,与类似组件的粒状材料相比,输出电压接近600%。该策略可以扩展到合成其他大型一维多钙钛矿材料,这些材料预计将广泛用于柔性电子,传感器设备和能量存储中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号