首页> 美国卫生研究院文献>Journal of Biomolecular Techniques : JBT >Apples with Oranges: Comparing the GS-FLX vs Ion Torrent Platforms for 16S Metagenomics Studies
【2h】

Apples with Oranges: Comparing the GS-FLX vs Ion Torrent Platforms for 16S Metagenomics Studies

机译:苹果与橙子:比较GS-FLX与离子激流平台进行16S元基因组学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Decreasing costs and faster turn-around times mean that next-generation platforms are more readily accessible to metagenomics researchers. We compared the suitability of the GS-FLX (XLR70) and Ion Torrent (314 with 100bp chemistry) to generate data sets that are suitable for 16S-based taxonomic metagenomics.Two marine samples (A and B) were prepared and run on both platforms, and the reads BLAST-aligned to a 16S database compiled from the GreenGenes dataset. Putative identities of the organisms present in the sample were obtained and sorted by the strength of their representation in the dataset.Sample diversity between the two samples on the 454 platform showed 95% similarity of the most highly represented organisms, while the PGM showed 85%. In addition, comparison of sample A between the 454 and PGM showed only 40% taxonomic similarity, with sample B showing 60%.These results suggest that the shorter reads produced by the ion torrent are currently not suited for 16S metagenomic analysis, which requires longer reads for accurate taxonomic identification. Ongoing improvements to the read lengths (>400bp) will result in the maturation of the PGM as a useful tool for microbial metagenomics.
机译:成本降低和周转时间缩短意味着宏基因组学研究人员可以更轻松地访问下一代平台。我们比较了GS-FLX(XLR70)和Ion Torrent(314具有100bp化学成分)的适用性,以生成适用于基于16S的分类宏基因组学的数据集。准备了两个海洋样品(A和B)并在两个平台上运行,并将读取的BLAST对齐到从GreenGenes数据集中编译的16S数据库。获取样本中存在的生物的假定身份并根据其在数据集中的表示强度进行排序.454平台上的两个样本之间的样本多样性表明,最具代表性的生物具有95%的相似性,而PGM显示85% 。另外,样品454与PGM之间的比较仅显示40%的分类相似性,而样品B则显示60%的相似性,这些结果表明离子激流产生的较短读数目前不适合16S宏基因组学分析,这需要更长的时间读取以进行准确的分类识别。读取长度(> 400bp)的持续改进将导致PGM成熟化,成为微生物宏基因组学的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号