首页> 美国卫生研究院文献>Journal of Animal Science >Conceptual framework for investigating causal effects from observational data in livestock
【2h】

Conceptual framework for investigating causal effects from observational data in livestock

机译:从牲畜观察数据调查因果关系的概念框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding causal mechanisms among variables is critical to efficient management of complex biological systems such as animal agriculture production. The increasing availability of data from commercial livestock operations offers unique opportunities for attaining causal insight, despite the inherently observational nature of these data. Causal claims based on observational data are substantiated by recent theoretical and methodological developments in the rapidly evolving field of causal inference. Thus, the objectives of this review are as follows: 1) to introduce a unifying conceptual framework for investigating causal effects from observational data in livestock, 2) to illustrate its implementation in the context of the animal sciences, and 3) to discuss opportunities and challenges associated with this framework. Foundational to the proposed conceptual framework are graphical objects known as directed acyclic graphs (>DAGs). As mathematical constructs and practical tools, DAGs encode putative structural mechanisms underlying causal models together with their probabilistic implications. The process of DAG elicitation and causal identification is central to any causal claims based on observational data. We further discuss necessary causal assumptions and associated limitations to causal inference. Last, we provide practical recommendations to facilitate implementation of causal inference from observational data in the context of the animal sciences.
机译:了解变量之间的因果机制对于有效管理复杂的生物系统(例如动物农业生产)至关重要。尽管这些数据具有内在的观察性,但商业化牲畜生产活动中越来越多的数据可用性为获得因果关系提供了独特的机会。基于观察数据的因果主张被因果推理迅速发展的最新理论和方法论发展所证实。因此,本次审查的目标如下:1)引入一个统一的概念框架,以调查牲畜观察数据中的因果关系; 2)说明其在动物科学背景下的实施;以及3)讨论机会和与该框架相关的挑战。提出的概念框架的基础是称为有向无环图(> DAG s)的图形对象。作为数学构造和实用工具,DAG对因果模型基础的推定结构机制及其概率含义进行编码。 DAG引发和因果关系识别的过程对于基于观察数据的任何因果关系声明至关重要。我们将进一步讨论必要的因果假设以及因果推断的相关局限性。最后,我们提供实用的建议,以促进在动物科学的背景下根据观测数据进行因果推理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号