首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Gaze Behavior Effect on Gaze Data Visualization at Different Abstraction Levels
【2h】

Gaze Behavior Effect on Gaze Data Visualization at Different Abstraction Levels

机译:在不同抽象级别的凝视数据可视化的凝视行为影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many gaze data visualization techniques intuitively show eye movement together with visual stimuli. The eye tracker records a large number of eye movements within a short period. Therefore, visualizing raw gaze data with the visual stimulus appears complicated and obscured, making it difficult to gain insight through visualization. To avoid the complication, we often employ fixation identification algorithms for more abstract visualizations. In the past, many scientists have focused on gaze data abstraction with the attention map and analyzed detail gaze movement patterns with the scanpath visualization. Abstract eye movement patterns change dramatically depending on fixation identification algorithms in the preprocessing. However, it is difficult to find out how fixation identification algorithms affect gaze movement pattern visualizations. Additionally, scientists often spend much time on adjusting parameters manually in the fixation identification algorithms. In this paper, we propose a gaze behavior-based data processing method for abstract gaze data visualization. The proposed method classifies raw gaze data using machine learning models for image classification, such as CNN, AlexNet, and LeNet. Additionally, we compare the velocity-based identification (I-VT), dispersion-based identification (I-DT), density-based fixation identification, velocity and dispersion-based (I-VDT), and machine learning based and behavior-based modelson various visualizations at each abstraction level, such as attention map, scanpath, and abstract gaze movement visualization.
机译:许多凝视数据可视化技术直观地与视觉刺激一起显示眼球运动。眼跟踪器在短时间内记录大量的眼睛运动。因此,通过视觉刺激可视化原始的凝视数据看起来复杂和模糊,使得难以通过可视化获得洞察力。为了避免并发症,我们经常使用固定识别算法以获取更多抽象可视化。在过去,许多科学家们专注于凝视数据抽象与注意地图,并分析了扫描路径可视化的细节凝视运动模式。摘要眼球运动模式根据预处理中的固定识别算法而大幅度变化。但是,很难了解固定识别算法如何影响凝视运动模式可视化。此外,科学家们经常在固定识别算法中手动调整参数的时间。在本文中,我们提出了一种基于凝视性的数据处理方法,用于抽象凝视数据可视化。该方法使用用于图像分类的机器学习模型来分类原始凝视数据,例如CNN,AlexNet和Lenet。另外,我们比较基于速度的识别(I-VT),基于分散的识别(I-DT),基于密度的固定识别,速度和基于分散的(I-VDT),以及基于机器的机器在每个抽象级别的模型各种可视化,例如注意地图,扫描路径和抽象的凝视运动可视化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号