首页> 美国卫生研究院文献>Entropy >Price Movement Prediction of Cryptocurrencies Using Sentiment Analysis and Machine Learning
【2h】

Price Movement Prediction of Cryptocurrencies Using Sentiment Analysis and Machine Learning

机译:使用情感分析和机器学习加密货物的价格运动预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cryptocurrencies are becoming increasingly relevant in the financial world and can be considered as an emerging market. The low barrier of entry and high data availability of the cryptocurrency market makes it an excellent subject of study, from which it is possible to derive insights into the behavior of markets through the application of sentiment analysis and machine learning techniques for the challenging task of stock market prediction. While there have been some previous studies, most of them have focused exclusively on the behavior of Bitcoin. In this paper, we propose the usage of common machine learning tools and available social media data for predicting the price movement of the Bitcoin, Ethereum, Ripple and Litecoin cryptocurrency market movements. We compare the utilization of neural networks (NN), support vector machines (SVM) and random forest (RF) while using elements from Twitter and market data as input features. The results show that it is possible to predict cryptocurrency markets using machine learning and sentiment analysis, where Twitter data by itself could be used to predict certain cryptocurrencies and that NN outperform the other models.
机译:加密货币在金融世界越来越相关,可以被视为新兴市场。加密货币的进入和高数据可用性的低屏障使其成为一项优秀的学习主题,通过应用情感分析和机器学习技术来说,可以通过应用股票挑战任务来实现对市场行为的洞察力市场预测。虽然有一些以前的研究,但大多数都专注于比特币的行为。在本文中,我们提出了共同机器学习工具的使用和可用的社交媒体数据,以预测比特币,以外的,纹波和LiteCoin Crypurrency市场运动的价格流动。我们将神经网络(NN),支持向量机(SVM)和随机林(RF)的利用进行比较,同时使用来自Twitter和市场数据的元素作为输入功能。结果表明,可以使用机器学习和情绪分析来预测加密货币性市场,其中Twitter数据本身可用于预测某些加密货币,并且NN优于其他模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号