首页> 美国卫生研究院文献>ACS Central Science >Cutting Materials in Half: A Graph Theory Approachfor Generating Crystal Surfaces and Its Prediction of 2D Zeolites
【2h】

Cutting Materials in Half: A Graph Theory Approachfor Generating Crystal Surfaces and Its Prediction of 2D Zeolites

机译:将材料减半:图论方法生成晶体表面的方法及其二维沸石的预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Scientific interest in two-dimensional (2D) materials, ranging from graphene and other single layer materials to atomically thin crystals, is quickly increasing for a large variety of technological applications. While in silico design approaches have made a large impact in the study of 3D crystals, algorithms designed to discover atomically thin 2D materials from their parent 3D materials are by comparison more sparse. We hypothesize that determining how to cut a 3D material in half (i.e., which Miller surface is formed) by severing a minimal number of bonds or a minimal amount of total bond energy per unit area can yield insight into preferred crystal faces. We answer this question by implementing a graph theory technique to mathematically formalize the enumeration of minimum cut surfaces of crystals. While the algorithm is generally applicable to different classes of materials, we focus on zeolitic materials due to their diverse structural topology and because 2D zeolites have promising catalytic and separation performance compared to their 3D counterparts.We report here a simple descriptor based only on structural informationthat predicts whether a zeolite is likely to be synthesizable in the2D form and correctly identifies the expressed surface in known layered2D zeolites. The discovery of this descriptor allows us to highlightother zeolites that may also be synthesized in the 2D form that have not been experimentally realized yet. Finally, our methodis general since the mathematical formalism can be applied to findthe minimum cut surfaces of other crystallographic materials suchas metal–organic frameworks, covalent-organic frameworks, zeolitic-imidazolateframeworks, metal oxides, etc.
机译:从各种石墨烯和其他单层材料到原子薄的晶体,二维(2D)材料的科学兴趣正在迅速增长,适用于多种技术应用。尽管计算机设计方法在3D晶体的研究中产生了巨大影响,但相比之下,旨在从其父级3D材料中发现原子薄的2D材料的算法却较为稀疏。我们假设通过切断最小数量的键或单位面积上最小的总键能量确定如何将3D材料切成两半(即形成Miller表面)可以深入了解首选的晶体面。我们通过实施图论技术来数学地形式化晶体最小切割面的枚举来回答这个问题。虽然该算法通常适用于不同类别的材料,但由于它们具有不同的结构拓扑,并且由于与2D沸石相比3D沸石具有令人鼓舞的催化和分离性能,因此我们将重点放在沸石材料上。我们在此报告仅基于结构信息的简单描述符可以预测沸石是否可能在2D形式并正确识别已知分层中的表达表面2D沸石。这个描述符的发现使我们可以强调尚未通过实验实现的也可以2D形式合成的其他沸石。最后,我们的方法是通用的,因为可以将数学形式主义用于查找其他晶体学材料的最小切割面,例如如金属-有机骨架,共价-有机骨架,沸石-咪唑框架,金属氧化物等

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号