首页> 美国卫生研究院文献>Entropy >Accuracy Assessment of Nondispersive Optical Perturbative Models through Capacity Analysis
【2h】

Accuracy Assessment of Nondispersive Optical Perturbative Models through Capacity Analysis

机译:通过容量分析对非运动光学扰动模型的准确性评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A number of simplified models, based on perturbation theory, have been proposed for the fiber-optical channel and have been extensively used in the literature. Although these models are mainly developed for the low-power regime, they are used at moderate or high powers as well. It remains unclear to what extent the capacity of these models is affected by the simplifying assumptions under which they are derived. In this paper, we consider single-channel data transmission based on three continuous-time optical models: (i) a regular perturbative channel, (ii) a logarithmic perturbative channel, and (iii) the stochastic nonlinear Schrödinger (NLS) channel. To obtain analytically tractable discrete-time models, we consider zero-dispersion fibers and a sampling receiver. We investigate the per-sample capacity of these models. Specifically, (i) we establish tight bounds on the capacity of the regular perturbative channel; (ii) we obtain the capacity of the logarithmic perturbative channel; and (iii) we present a novel upper bound on the capacity of the zero-dispersion NLS channel. Our results illustrate that the capacity of these models departs from each other at high powers because these models yield different capacity pre-logs. Since all three models are based on the same physical channel, our results highlight that care must be exercised in using simplified channel models in the high-power regime.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号