首页> 美国卫生研究院文献>Human Brain Mapping >Cortico‐striato‐thalamo‐cerebellar networks of structural covariance underlying different epilepsy syndromes associated with generalized tonic–clonic seizures
【2h】

Cortico‐striato‐thalamo‐cerebellar networks of structural covariance underlying different epilepsy syndromes associated with generalized tonic–clonic seizures

机译:与广义滋补克隆癫痫发作相关的不同癫痫综合征的皮质桥 - 丘脑 - 大脑网络结构协方差

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Generalized tonic–clonic seizures (GTCS) are the severest and most remarkable clinical expressions of human epilepsy. Cortical, subcortical, and cerebellar structures, organized with different network patterns, underlying the pathophysiological substrates of genetic associated epilepsy with GTCS (GE‐GTCS) and focal epilepsy associated with focal to bilateral tonic–clonic seizure (FE‐FBTS). Structural covariance analysis can delineate the features of epilepsy network related with long‐term effects from seizure. Morphometric MRI data of 111 patients with GE‐GTCS, 111 patients with FE‐FBTS and 111 healthy controls were studied. Cortico‐striato‐thalao‐cerebellar networks of structural covariance within the gray matter were constructed using a Winner‐take‐all strategy with five cortical parcellations. Comparisons of structural covariance networks were conducted using permutation tests, and module effects of disease duration on networks were conducted using GLM model. Both patient groups showed increased connectivity of structural covariance relative to controls, mainly within the striatum and thalamus, and mostly correlated with the frontal, motor, and somatosensory cortices. Connectivity changes increased as a function of epilepsy durations. FE‐FBTS showed more intensive and extensive gray matter changes with volumetric loss and connectivity increment than GE‐GTCS. Our findings implicated cortico‐striato‐thalamo‐cerebellar network changes at a large temporal scale in GTCS, with FE‐FBTS showing more severe network disruption. The study contributed novel imaging evidence for understanding the different epilepsy syndromes associated with generalized seizures.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号