首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion
【2h】

Analysis of Cattle Social Transitional Behaviour: Attraction and Repulsion

机译:牛社会转型行为分析:吸引力和排斥

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding social interactions in livestock groups could improve management practices, but this can be difficult and time-consuming using traditional methods of live observations and video recordings. Sensor technologies and machine learning techniques could provide insight not previously possible. In this study, based on the animals’ location information acquired by a new cooperative wireless localisation system, unsupervised machine learning approaches were performed to identify the social structure of a small group of cattle yearlings (n=10) and the social behaviour of an individual. The paper first defined the affinity between an animal pair based on the ranks of their distance. Unsupervised clustering algorithms were then performed, including K-means clustering and agglomerative hierarchical clustering. In particular, K-means clustering was applied based on logical and physical distance. By comparing the clustering result based on logical distance and physical distance, the leader animals and the influence of an individual in a herd of cattle were identified, which provides valuable information for studying the behaviour of animal herds. Improvements in device robustness and replication of this work would confirm the practical application of this technology and analysis methodologies.
机译:了解牲畜群体中的社会互动可以改善管理实践,但是使用传统的现场观察方法和视频录制来难以耗时。传感器技术和机器学习技术可以提供洞察力,以前无法实现。在本研究中,基于由新的合作无线定位系统获取的动物的位置信息,执行无监督的机器学习方法,以识别一小组牛鸽(n = 10)和个人的社会行为的社会结构。本文首先根据其距离的级别来定义动物对之间的亲和力。然后执行未经监督的聚类算法,包括K-Means聚类和附聚层次聚类。特别是,基于逻辑和物理距离应用K-Means聚类。通过基于逻辑距离和物理距离的聚类结果进行比较,确定了领导者动物和个体在牛群中的影响,这为研究动物群的行为提供了有价值的信息。该工作的设备稳健性和复制的改进将确认本技术和分析方法的实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号