首页> 美国卫生研究院文献>Polymers >Polymer Microchannel and Micromold Surface Polishing for Rapid Low-Quantity Polydimethylsiloxane and Thermoplastic Microfluidic Device Fabrication
【2h】

Polymer Microchannel and Micromold Surface Polishing for Rapid Low-Quantity Polydimethylsiloxane and Thermoplastic Microfluidic Device Fabrication

机译:用于快速低量多二甲基硅氧烷和热塑性微流体器件制造的聚合物微通道和微胶体表面抛光

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Polymer-based micromolding has been proposed as an alternative to SU-8 micromolding for microfluidic chip fabrication. However, surface defects such as milling marks may result in rough microchannels and micromolds, limiting microfluidic device performance. Therefore, we use chemical and mechanical methods for polishing polymer microchannels and micromolds. In addition, we evaluated their performance in terms of removing the machining (milling) marks on polymer microchannel and micromold surfaces. For chemical polishing, we use solvent evaporation to polish the sample surfaces. For mechanical polishing, wool felt polishing bits with an abrasive agent were employed to polish the sample surfaces. Chemical polishing reduced surface roughness from 0.38 μm (0 min, after milling) to 0.13 μm after 6 min of evaporation time. Mechanical polishing reduced surface roughness from 0.38 to 0.165 μm (optimal pressing length: 0.3 mm). As polishing causes abrasion, we evaluated sample geometry loss after polishing. Mechanically and chemically polished micromolds had optimal micromold distortion percentages of 1.01% ± 0.76% and 1.10% ± 0.80%, respectively. Compared to chemical polishing, mechanical polishing could better maintain the geometric integrity since it is locally polished by computer numerical control (CNC) miller. Using these surface polishing methods with optimized parameters, polymer micromolds and microchannels can be rapidly produced for polydimethylsiloxane (PDMS) casting and thermoplastic hot embossing. In addition, low-quantity (15 times) polymer microchannel replication is demonstrated in this paper.
机译:已经提出了基于聚合物的微胶体作为用于微流体芯片制造的SU-8微胶质的替代方案。然而,诸如铣削标记的表面缺陷可能导致粗糙的微通道和微胶质,限制微流体装置性能。因此,我们使用化学和机械方法来抛光聚合物微通道和微胶质。此外,我们在去除聚合物微通道和微胶体表面上的加工(研磨)标记方面评估了它们的性能。对于化学抛光,我们使用溶剂蒸发来抛光样品表面。对于机械抛光,使用具有磨料剂的羊毛毡抛光比特抛光样品表面。在蒸发时间6分钟后,化学抛光从0.38μm(0 min)的表面粗糙度从0.38μm(0 min)降低至0.13μm。机械抛光降低表面粗糙度为0.38至0.165μm(最佳按压长度:0.3mm)。由于抛光导致磨损,我们在抛光后评估了样品几何损失。机械和化学抛光的微胶质具有最佳的微胶体变形百分比,分别为1.01%±0.76%和1.10%±0.80%。与化学抛光相比,机械抛光可以更好地保持几何完整性,因为它是通过计算机数控(CNC)米勒本地抛光的。使用具有优化参数的这些表面抛光方法,可以为聚二甲基硅氧烷(PDMS)浇铸和热塑性热压印迅速生产聚合物微胶囊和微通道。此外,本文证明了低量(15次)聚合物微通道复制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号