首页> 美国卫生研究院文献>Advanced Science >High Frequency Sonoprocessing: A New Field of Cavitation‐Free Acoustic Materials Synthesis Processing and Manipulation
【2h】

High Frequency Sonoprocessing: A New Field of Cavitation‐Free Acoustic Materials Synthesis Processing and Manipulation

机译:高频多级处理:一种空化声学材料的新领域合成加工和操纵

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ultrasound constitutes a powerful means for materials processing. Similarly, a new field has emerged demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (⩽3 MHz) for synthesizing and manipulating a variety of bulk, nanoscale, and biological materials. At these frequencies and the typical acoustic intensities employed, cavitation—which underpins most sonochemical or, more broadly, ultrasound‐mediated processes—is largely absent, suggesting that altogether fundamentally different mechanisms are at play. Examples include the crystallization of novel morphologies or highly oriented structures; exfoliation of 2D quantum dots and nanosheets; polymer nanoparticle synthesis and encapsulation; and the possibility for manipulating the bandgap of 2D semiconducting materials or the lipid structure that makes up the cell membrane, the latter resulting in the ability to enhance intracellular molecular uptake. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with such high‐frequency surface vibration gives rise to a variety of static and dynamic charge generation and transfer effects, in addition to molecular ordering, polarization, and assembly—remarkably, given the vast dimensional separation between the acoustic wavelength and characteristic molecular length scales, or between the MHz‐order excitation frequencies and typical THz‐order molecular vibration frequencies.
机译:超声波构成了用于材料处理的强大手段。类似地,新的领域已经表明,与传统超声(⩽3MHz)相比,在相当高的超声(⩽3MHz)相比,用于合成和操纵各种散装,纳米级和生物材料的频率相比,在相当高的频率(10MHz至1GHz)下利用相当高的频率(10MHz至1GHz)的可能性。在这些频率和所采用的典型声强度,空化 - 这是大多数儿童化学或更广泛的超声介导的过程 - 在很大程度上缺席,这表明完全不同的机制在游戏中。实例包括新型形态或高度取向结构的结晶; 2D量子点和纳米液的剥离;聚合物纳米粒子合成和包封;并且可以操纵2D半导体材料的带隙或构成细胞膜的脂质结构的可能性,后者导致增强细胞内分子摄取的能力。这些迷人的例子揭示了与这种高频表面振动相关的高度非线性机电耦合如何产生各种静态和动态电荷产生和转移效果,除了分子排序,极化和集装 - 鉴于巨大尺寸声波长和特征分子长度或MHz级激励频率和典型的三维阶分子振动频率之间的分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号