首页> 外文学位 >Manipulation of electromagnetic fields with plasmonic nanostructures: Nonlinear frequency mixing, optical manipulation, enhancement and suppression of photocurrent in a silicon photodiode, and surface-enhanced spectroscopy.
【24h】

Manipulation of electromagnetic fields with plasmonic nanostructures: Nonlinear frequency mixing, optical manipulation, enhancement and suppression of photocurrent in a silicon photodiode, and surface-enhanced spectroscopy.

机译:具有等离激元纳米结构的电磁场的操纵:非线性频率混合,光学操纵,硅光电二极管中光电流的增强和抑制以及表面增强光谱。

获取原文
获取原文并翻译 | 示例

摘要

Metallic nanostructures are one of the most versatile tools available for manipulating light at the nanoscale. These nanostructures support surface plasmons, which are collective excitations of the conduction electrons that can exist as propagating waves at a metallic interface or as localized excitations of a nanoparticle or nanostructure. Plasmonic structures can efficiently couple energy from freely propagating electromagnetic waves to localized electromagnetic fields and vice-versa, essentially acting as an optical antenna. As a result, the intensity of the local fields around and inside the nanostructure are strongly enhanced compared to the incident radiation.;In this thesis, this ability to manipulate electromagnetic fields on the nanoscale is employed to control a wide range of optical phenomena. These studies are performed using structures based on metallic nanoshells, which consist of a thin Au shell coating a silica nanosphere. To investigate the parameters controlling the plasmonic response of metallic nanoshells, two changes to the nanoshell composition are studied: (1) the Au shell is replaced with Cu which has interband transitions that strongly influence the plasmon resonance, and (2) the silica core is replaced by a semiconducting Cu 2O core which has a significantly higher dielectric constant and non-trivial absorbance. The focusing of electromagnetic energy into intense local fields by plasmonic nanostructures is then directly investigated by profiling the nanoshell near field using a Raman-based molecular ruler. Next, plasmons supported by Au nanoshells are used to control the fluorescence of near-infrared fluorophores placed at controlled distances from the nanoshell surface. In this context, the analogy of an optical antenna is very relevant: the enhanced field at the surface of the nanoshell increases the absorption of light by the fluorophore, or equivalently couples propagating electromagnetic waves into a localized receiver, while the large scattering cross section enhances the coupling of energy from a localized source, the fluorophore, to far-field radiation. Excellent agreement with models based on Mie theory is achieved for both Raman and fluorescence. Experimentally measured enhancements of the radiative decay rate for fluorophores on Au nanoshells and Au nanorods are also consistent with this model. Plasmonic nanostructures can also control the flow of light into larger structures. This is observed by measuring the nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode is at the single particle level for silica nanospheres, Au nanospheres, and two types of Au nanoshell Finally, the simultaneous physical manipulation of an individual plasmonic nanostructure on the few-nanometer scale using light and detection of the local electromagnetic field during this ongoing process with the same incident beam is performed. For this experiment, a Au nanoshell is separated from a metallic surface by a few-nanometer thick polymer layer to form a nanoscale junction, or nanogap Illuminating this structure with ultrashort optical pulses, exciting the plasmon resonance, results in a continuous, monitorable collapse of the nanogap. An easily detectable four-wave mixing (FWM) signal is simultaneously generated by this illumination of the nanogap, providing a continuous, highly sensitive optical monitor of the nanogap spacing while it is being optically reduced. The dramatic increase in this signal upon contact provides a clear, unambiguous signal of the gap closing.
机译:金属纳米结构是可用于操纵纳米级光的最通用的工具之一。这些纳米结构支持表面等离激元,表面等离激元是传导电子的集体激发,可以作为在金属界面上的传播波或作为纳米粒子或纳米结构的局部激发而存在。等离子体结构可以将自由传播的电磁波中的能量有效地耦合到局部电磁场,反之亦然,基本上可以充当光学天线。结果,与入射辐射相比,纳米结构周围和内部的局部场的强度大大提高。;在本文中,这种在纳米尺度上操纵电磁场的能力被用来控制广泛的光学现象。这些研究是使用基于金属纳米壳的结构进行的,该结构由覆盖二氧化硅纳米球的薄金壳组成。为了研究控制金属纳米壳的等离子体响应的参数,研究了纳米壳组成的两个变化:(1)Au壳被Cu取代,其带间跃迁强烈影响等离子体共振,(2)硅核为取而代之的是具有明显更高介电常数和非平凡吸收率的半导体Cu 2O核。然后通过使用基于拉曼的分子尺对纳米壳近场进行轮廓分析,直接研究了通过等离激元纳米结构将电磁能量聚焦到强烈的局部场中。接下来,由Au纳米壳支撑的等离激元被用来控制与纳米壳表面相距一定距离的近红外荧光团的荧光。在这种情况下,光学天线的类比是非常相关的:纳米壳表面的增强场增加了荧光团对光的吸收,或者等效地将传播的电磁波耦合到局部接收器中,而大的散射截面则增强了来自局部源(荧光团)的能量与远场辐射的耦合。对于拉曼光谱和荧光光谱,都与基于Mie理论的模型取得了极好的一致性。实验测得的Au纳米壳和Au纳米棒上的荧光团的辐射衰减率增强也与此模型一致。等离子体纳米结构还可以控制光进入较大结构的流动。通过测量纳米粒子在硅光电二极管中对二氧化硅纳米球,Au纳米球和两种类型的Au纳米壳的单粒子水平上的光电流增强和抑制作用,可以观察到这一点。在使用相同入射光束的正在进行的过程中,使用光进行了几纳米级的测量并检测了局部电磁场。对于本实验,Au纳米壳通过几纳米厚的聚合物层与金属表面隔开,形成纳米级结,即纳米间隙,用超短光脉冲照亮该结构,激发等离子体激元共振,导致连续,可监测的塌陷。纳米间隙。纳米间隙的这种照射同时生成了易于检测的四波混合(FWM)信号,从而在光学缩小纳米间隙的同时,提供了连续,高度灵敏的光学监控器。接触时该信号的急剧增加提供了间隙闭合的清晰,明确的信号。

著录项

  • 作者

    Grady, Nathaniel K.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:44

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号