首页> 美国卫生研究院文献>International Journal of Environmental Research and Public Health >Effects of Data Aggregation on Time Series Analysis of Seasonal Infections
【2h】

Effects of Data Aggregation on Time Series Analysis of Seasonal Infections

机译:数据聚集对时序感染时间序列分析的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Time series analysis in epidemiological studies is typically conducted on aggregated counts, although data tend to be collected at finer temporal resolutions. The decision to aggregate data is rarely discussed in epidemiological literature although it has been shown to impact model results. We present a critical thinking process for making decisions about data aggregation in time series analysis of seasonal infections. We systematically build a harmonic regression model to characterize peak timing and amplitude of three respiratory and enteric infections that have different seasonal patterns and incidence. We show that irregularities introduced when aggregating data must be controlled during modeling to prevent erroneous results. Aggregation irregularities had a minimal impact on the estimates of trend, amplitude, and peak timing for daily and weekly data regardless of the disease. However, estimates of peak timing of the more common infections changed by as much as 2.5 months when controlling for monthly data irregularities. Building a systematic model that controls for data irregularities is essential to accurately characterize temporal patterns of infections. With the urgent need to characterize temporal patterns of novel infections, such as COVID-19, this tutorial is timely and highly valuable for experts in many disciplines.
机译:流行病学研究中的时间序列分析通常对聚合计数进行,尽管数据趋于在更精细的时间分辨率下收集数据。在流行病学文献中很少讨论汇总数据的决定,尽管它已被证明会影响模型结果。我们展示了一项批判性思维过程,以制定关于季节性感染时间序列分析的数据汇总的决定。我们系统地构建谐波回归模型,以表征具有不同季节性模式和发病率的三个呼吸系统和肠道感染的峰时序和幅度。我们表明在建模期间必须控制聚合数据时引入的不规则性以防止错误结果。聚集不规则性对日常和每周数据的趋势,幅度和峰值时机的估计产生最小的影响,无论疾病如何。然而,在控制每月数据不规则性时,对更常见的感染的峰值时序的估计变化多达2.5个月。构建一个系统模型,控制数据不规则性是必要的,以准确地表征颞型感染模式。随着迫切需要表征新的新型感染的时间模式,例如Covid-19,本教程对许多学科的专家来说是及时而高贵的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号