首页> 美国卫生研究院文献>Polymers >Curing Behaviors of Alkynyl-Terminated Copolyether with Glycidyl Azide Polymer in Energetic Plasticizers
【2h】

Curing Behaviors of Alkynyl-Terminated Copolyether with Glycidyl Azide Polymer in Energetic Plasticizers

机译:烷基末端共聚醚和缩水甘油基叠氮化物在高能增塑剂中的固化行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Alkynyl-terminated polyethylene oxide−tetrahydrofuran (ATPET) and glycidyl azide polymer (GAP) could be linked through click-chemistry between the alkynyl and azide, and the product may serve a binder for solid propellants. The effects of the energetic plasticizers A3 [1:1 mixture of bis-(2,2-dinitropropy) acetal (BDNPA) and bis-(2,2-dinitropropyl) formal(BDNPN)] and Bu-NENA [N-butyl-N-(2nitroxyethyl) nitramine] on the curing reaction between ATPET and GAP have been studied. A diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY-NMR) approach has been used to monitor the change in the diffusion coefficient of cross-linked polytriazole polyethylene oxide−tetrahydrofuran (PTPET). The change in the diffusion coefficient of PTPET with A3 plasticizer is significantly higher than that of PTPET with Bu-NENA. Viscosity analysis further highlighted the difference between A3 and Bu-NENA in the curing process—the curing curve of PTPET (A3) with time can be divided into two stages, with an inflection point being observed on the fourth day. For PTPET (Bu-NENA), in contrast, only one stage is seen. The above methods, together with gel permeation chromatography (GPC) analysis, revealed distinct effects of A3 and Bu-NENA on the curing process of PTPET. X-ray Photoelectron Spectroscopy (XPS) analysis showed that Bu-NENA has little effect on the valence oxidation of copper in the catalyst. Thermogravimetric (TG) analysis indicated that Bu-NENA helps to improve the thermal stability of the catalyst. After analysis of several possible factors by means of XPS, modeling with Material Studio and TG, the formation of molecular cages between Bu-NENA and copper is considered to be the reason for the above differences. In this article, GAP ( = 4000 g/mol) was used to replace GAP ( = 427 g/mol) to successfully synthesize the PTPET elastomer with Bu-NENA plasticizer. Mechanical data measured for the PTPET (Bu-NENA) sample included = 34.26 ± 2.98%, and = 0.198 ± 0.015 MPa.
机译:炔基封端的聚环氧乙烷-四氢呋喃(ATPET)和缩水甘油基叠氮化物聚合物(GAP)可以通过点击化学在炔基和叠氮化物之间连接,该产物可以用作固体推进剂的粘合剂。高能增塑剂A3 [双(2,2-二硝基丙基)乙缩醛(BDNPA)和双-(2,2-二硝基丙基)缩甲醛(BDNPN)的1:1混合物]和Bu-NENA [N-丁基-研究了N-(2-硝基氧乙基)硝胺对ATPET与GAP之间固化反应的影响。扩散有序核磁共振波谱(DOSY-NMR)方法已用于监测交联聚三唑聚环氧乙烷-四氢呋喃(PTPET)扩散系数的变化。含A3增塑剂的PTPET的扩散系数变化明显高于含Bu-NENA的PTPET的扩散系数变化。粘度分析进一步强调了A3和Bu-NENA在固化过程中的区别-PTPET(A3)随时间的固化曲线可以分为两个阶段,在第四天观察到拐点。相反,对于PTPET(Bu-NENA),只能看到一个阶段。上述方法与凝胶渗透色谱(GPC)分析一起揭示了A3和Bu-NENA对PTPET固化过程的明显影响。 X射线光电子能谱(XPS)分析表明,Bu-NENA对催化剂中铜的价态氧化几乎没有影响。热重分析(TG)表明,Bu-NENA有助于改善催化剂的热稳定性。在通过XPS分析了几种可能的因素之后,使用Material Studio和TG进行建模,认为Bu-NENA和铜之间的分子笼形成是造成上述差异的原因。在本文中,使用GAP(= 4000 g / mol)代替GAP(= 427 g / mol),以成功地用Bu-NENA增塑剂合成PTPET弹性体。对PTPET(Bu-NENA)样品测得的力学数据包括= 34.26±2.98%和= 0.198±0.015 MPa。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号