首页> 外文会议>North American Thermal Analysis Society conference >Cure kinetics of glycidyl azide polymer (GAP) with propargyl esters, bis-propargyl ether, and 4,4'-dicyanohepta-l,6-diyne, a possible energetic curing agent for azide polymers
【24h】

Cure kinetics of glycidyl azide polymer (GAP) with propargyl esters, bis-propargyl ether, and 4,4'-dicyanohepta-l,6-diyne, a possible energetic curing agent for azide polymers

机译:缩水甘油基叠氮化物聚合物(GAP)与炔丙基酯,双炔丙基醚和4,4'-二氰基庚基-1,6-二炔(一种可能用于叠氮化物聚合物的高能固化剂)的固化动力学

获取原文

摘要

Dipolarophiles related to bis-propargyl esters and ethers are known as alternative curing agents to isocyanates for hydroxyl-terminated azide polymers: they are less ecotoxic and allow a curing reaction to take place by 1,3-dipolar cycloaddition in the presence of moisture without undesirable side-effects [1]. However, the cycloaddition reaction of dipolarophiles with energetic azide polymers involves higher heat generation than with isocyanates, creating a potential hazard due to the possibility of thermal runaway and degradation of the polymer if the resulting heat cannot be adequately dissipated from the system [2]. To better understand this reaction and form accurate predictions towards the scale-up of this process with various dipolarophiles, the curing kinetics of glycidyl azide polymers (GAP) through 1,3-dipolar cycloadditon were studied via differential scanning calorimetry (DSC) for four compounds: two propargyl esters (bis-propargyl oxalate, BPO and bis-propargyl malonate, BPM), one ether (bis-propargyl ether, BPE), and one dialkyne (4,4'-dicyanohepta-l,6-diyne, DCHD), all of which were synthesized and characterized. The effects of higher alkyne-to-azide-ratios (C7CH/N3) and of the chemical composition of the dipolarophiles on the reaction kinetics were studied and it was found that the Kissinger activation energy (Ea) of the curing reaction for the oxalate ester showed an increase of up to 32% (68.0 kJ/mol to 89.9 kJ/mol) for mixtures of higher C7CH/N3 ratios while the other esters were less affected over the same range (BPM 72-80 kJ/mol, BPS 71-83 kJ/mol). Moreover, the presence of two strong electron-withdrawing nitrile groups in the structure of DCHD did not lead to a remarkably high reactivity (Ea = 73-80 kJ/mol) and the most consistently reactive compound was found to be BPE (70-73 kJ/mol).
机译:与双炔丙基酯和醚有关的双极性亲油被认为是羟基封端的叠氮化物聚合物的异氰酸酯的替代固化剂:它们的生态毒性较小,并且允许在水分存在下通过1,3-偶极环加成反应发生固化反应而没有不希望的结果副作用[1]。但是,偶极亲子与高能叠氮化物聚合物的环加成反应比异氰酸酯具有更高的热量产生,如果不能从系统中充分散发所产生的热量,则由于热失控和聚合物降解的可能性而产生潜在的危害[2]。为了更好地理解该反应并形成对使用各种双极性亲核试剂扩大该工艺的准确预测,通过差示扫描量热法(DSC)研究了缩水甘油叠氮化物聚合物(GAP)通过1,3-偶极环己二酮的固化动力学,研究了四种化合物:两种炔丙基酯(草酸双炔丙基酯,丙二酸双炔丙基酯,BPM),一种醚(双炔丙基醚,BPE)和一种二炔(4,4'-dicyanohepta-1,6-diyne,DCHD) ,所有这些都经过合成和表征。研究了高级炔烃-叠氮比(C7CH / N3)和偶极亲子的化学组成对反应动力学的影响,发现草酸酯固化反应的基辛格活化能(Ea) C7CH / N3比例更高的混合物显示最高增加32%(68.0 kJ / mol至89.9 kJ / mol),而其他酯在相同范围内(BPM 72-80 kJ / mol,BPS 71- 83 kJ / mol)。此外,在DCHD结构中存在两个较强的吸电子腈基并不会导致显着高的反应性(Ea = 73-80 kJ / mol),并且发现最稳定的反应性化合物是BPE(70-73 kJ / mol)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号