首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Optimal Geostatistical Methods for Interpolation of the Ionosphere: A Case Study on the St Patrick’s Day Storm of 2015
【2h】

Optimal Geostatistical Methods for Interpolation of the Ionosphere: A Case Study on the St Patrick’s Day Storm of 2015

机译:电离层插值的最佳地统计方法:以2015年圣帕特里克节暴风为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Geostatistical Analyst is a set of advanced tools for analysing spatial data and generating surface models using statistical and deterministic methods available in ESRI ArcMap software. It enables interpolation models to be created on the basis of data measured at chosen points. The software also provides tools that enable analyses of the data variability, setting data limits and checking global trends, as well as creating forecast maps, estimating standard error and probability, making various surface visualisations, and analysing spatial autocorrelation and correlation between multiple data sets. The data can be interpolated using deterministic methods providing surface continuity, and also by stochastic techniques like kriging, based on a statistical model considering data autocorrelation and providing expected interpolation errors. These properties of Geostatistical Analyst make it a valuable tool for modelling and analysing the Earth’s ionosphere. Our research aims to test its applicability for studying the ionosphere, and ionospheric disturbances in particular. As raw source data, we use Global Navigation Satellite Systems (GNSS)-derived ionospheric total electron content. This paper compares ionosphere models (maps) developed using various interpolation methods available in Geostatistical Analyst. The comparison is based on several indicators that can provide the statistical characteristics of an interpolation error. In this contribution, we use our own method, the parametric assessment of the quality of estimation (MPQE). Here, we present analyses and a discussion of the modelling results for various states of the ionosphere: On the disturbed day of the St Patrick’s Day geomagnetic storm of 2015, one quiet day before the storm and one day after its occurrence, reflecting the ionosphere recovery phase. Finally, the optimal interpolation method is selected and presented.
机译:Geostatistical Analyst是一套先进的工具,可使用ESRI ArcMap软件中提供的统计和确定性方法来分析空间数据并生成表面模型。它使得可以基于在选定点处测量的数据来创建插值模型。该软件还提供了可用于分析数据可变性,设置数据限制和检查全局趋势,以及创建预测图,估计标准误差和概率,进行各种表面可视化以及分析多个数据集之间的空间自相关和相关性的工具。可以使用确定性方法(可提供曲面连续性)对数据进行插值,也可以使用随机技术(例如克里金法)进行插值,方法是基于考虑数据自相关并提供预期插值误差的统计模型。地统计分析仪的这些属性使其成为用于建模和分析地球电离层的宝贵工具。我们的研究旨在测试其在研究电离层特别是电离层扰动方面的适用性。作为原始数据,我们使用源自全球导航卫星系统(GNSS)的电离层总电子含量。本文比较了使用Geostatistical Analyst中可用的各种插值方法开发的电离层模型(地图)。比较是基于可以提供内插误差统计特征的几个指标。在此贡献中,我们使用自己的方法,即估算质量(MPQE)的参数评估。在此,我们对电离层的各种状态进行分析和建模结果的讨论:在2015年圣帕特里克节地磁风暴的受扰日,暴风雨发生前的安静一天和发生后的一天,反映了电离层的恢复相。最后,选择并提出了最优插值方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号