首页> 美国卫生研究院文献>Human Brain Mapping >Brain network profiling defines functionally specialized cortical networks
【2h】

Brain network profiling defines functionally specialized cortical networks

机译:脑网络分析定义功能专用的皮质网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuroimaging research made rapid advances in the study of the functional architecture of the brain during the past decade. Many proposals endorsed the relevance of large‐scale brain networks, defined as ensembles of brain regions that exhibit highly correlated signal fluctuations. However, analysis methods need further elaboration to define the functional and anatomical extent of specialized subsystems within classical networks with a high reliability. We present a novel approach to characterize and examine the functional proprieties of brain networks. This approach, labeled as brain network profiling (BNP), considers similarities in task‐evoked activity and resting‐state functional connectivity across biologically relevant brain subregions. To combine task‐driven activity and functional connectivity features, principal components were extracted separately for task‐related beta values and resting‐state functional connectivity ‐values (data available from the Human Connectome Project), from 360 brain parcels. Multiple clustering procedures were employed to assess if different clustering methods (Gaussian mixtures; ‐means) and/or data structures (task and rest data; only rest data) led to improvements in the replication of the brain architecture. The results indicated that combining information from resting‐state functional connectivity and task‐evoked activity and using Gaussian mixtures models for clustering produces more reliable results (99% replication across data sets). Moreover, the findings revealed a high‐resolution partition of the cerebral cortex in 16 networks with unique functional connectivity and/or task‐evoked activity profiles. BNP potentially offers new approaches to advance the investigation of the brain functional architecture.
机译:在过去的十年中,神经影像学研究在大脑功能结构的研究中取得了长足的进步。许多提议都认可了大规模大脑网络的相关性,大规模大脑网络被定义为表现出高度相关的信号波动的大脑区域集合。但是,分析方法需要进一步完善,以定义具有高可靠性的经典网络中专用子系统的功能和解剖范围。我们提出了一种新颖的方法来表征和检查大脑网络的功能特性。标记为脑网络分析(BNP)的这种方法考虑了跨生物学相关脑子区域的任务诱发活动和静止状态功能连接的相似性。为了结合任务驱动的活动和功能连接功能,分别从360个脑袋中提取了与任务相关的beta值和静止状态功能连接值(可从Human Connectome Project获得的数据)的主要成分。采用了多个聚类程序来评估不同的聚类方法(高斯混合;均值)和/或数据结构(任务和休息数据;仅休息数据)是否导致大脑结构复制的改善。结果表明,结合来自静态功能连接和任务诱发活动的信息,并使用高斯混合模型进行聚类,可以得到更可靠的结果(跨数据集的复制率达到99%)。此外,研究结果还揭示了大脑皮层在16个网络中的高分辨率分布,具有独特的功能连接性和/或任务诱发的活动特征。 BNP可能提供新的方法来推进对大脑功能结构的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号