【24h】

Predicting Fluid Intelligence Using Anatomical Measures Within Functionally Defined Brain Networks

机译:在功能定义的大脑网络中使用解剖学方法预测流体智能

获取原文

摘要

The ABCD Neurocognitive Prediction Challenge (ABCD-NP-Challenge 2019) made available T1-weighted structural scans for children alongside their fluid intelligence scores. The goal of the challenge was to use this anatomical brain data to train a model that could be successful in predicting fluid intelligence scores from held-out T1-weighted structural scans taken of other children. Functional magnetic resonance imaging (fMRI) has been moderately successful at identifying neural correlates of cognitive functioning, including intelligence. This study sought to leverage anatomical metrics within functionally defined regions, convolutional neural networks, and regression models to predict fluid intelligence. The proposed model performed competitively on the ABCD-NP-Challenge, and significantly outperformed a non deep-learning approach for behavior prediction based on the LASSO.
机译:ABCD神经认知预测挑战赛(ABCD-NP-Challenge 2019)为儿童提供了T1加权结构扫描以及他们的体液智力评分。挑战的目标是使用解剖脑数据来训练一个模型,该模型可以成功地根据对其他儿童进行的T1加权结构扫描得出的流体智力评分。功能磁共振成像(fMRI)在识别认知功能(包括智力)的神经相关方面已经取得了一定的成功。这项研究试图利用功能定义区域,卷积神经网络和回归模型中的解剖学指标来预测流体智能。所提出的模型在ABCD-NP-Challenge上具有竞争性,并且明显优于基于LASSO的非深度学习方法进行行为预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号