首页> 美国卫生研究院文献>Synthetic and Systems Biotechnology >Designing chimeric enzymes inspired by fungal cellulosomes
【2h】

Designing chimeric enzymes inspired by fungal cellulosomes

机译:设计受真菌纤维素启发的嵌合酶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cellulosomes are synthesized by anaerobic bacteria and fungi to degrade lignocellulose via synergistic action of multiple enzymes fused to a protein scaffold. Through templating key protein domains (cohesin and dockerin), designer cellulosomes have been engineered from bacterial motifs to alter the activity, stability, and degradation efficiency of enzyme complexes. Recently a parts list for fungal cellulosomes from the anaerobic fungi ( ) was determined, which revealed sequence divergent fungal cohesin, dockerin, and scaffoldin domains that could be used to expand the available toolbox to synthesize designer cellulosomes. In this work, multi-domain carbohydrate active enzymes (CAZymes) from 3 cellulosome-producing fungi were analyzed to inform the design of chimeric proteins for synthetic cellulosomes inspired by anaerobic fungi. In particular, was used as a structural template for chimeric carbohydrate active enzymes. Recombinant enzymes with retained properties were engineered by combining thermophilic glycosyl hydrolase domains from with dockerin domains from . By preserving the protein domain order from , chimeric enzymes retained catalytic activity at temperatures over 80 °C and were able to associate with cellulosomes purified from anaerobic fungi. Fungal cellulosomes harbor a wide diversity of glycoside hydrolases, each representing templates for the design of chimeric enzymes. By conserving dockerin domain position within the primary structure of each protein, the activity of both the catalytic domain and dockerin domain was retained in enzyme chimeras. Taken further, the domain positioning inferred from native fungal cellulosome proteins can be used to engineer multi-domain proteins with non-native favorable properties, such as thermostability.
机译:纤维素是由厌氧细菌和真菌合成的,通过融合到蛋白质支架上的多种酶的协同作用来降解木质纤维素。通过模板化关键蛋白质结构域(粘着蛋白和码头蛋白),设计的纤维素小体已从细菌基序中改造出来,以改变酶复合物的活性,稳定性和降解效率。最近,确定了来自厌氧真菌()的真菌纤维素的零件清单,该清单揭示了序列分歧的真菌粘着蛋白,泊坞蛋白和支架蛋白结构域,可用于扩展可用的工具箱以合成设计师的纤维素体。在这项工作中,分析了来自3个产生纤维素酶的真菌的多域碳水化合物活性酶(CAZymes),以指导受厌氧真菌启发的合成纤维素酶的嵌合蛋白的设计。特别是,它被用作嵌合碳水化合物活性酶的结构模板。具有保留特性的重组酶是通过将嗜热的糖基水解酶域和来自的dockerin域结合来设计的。通过保持蛋白质结构域顺序,嵌合酶在80°C以上的温度下仍具有催化活性,并且能够与从厌氧真菌中纯化的纤维素体结合。真菌纤维素小体具有多种多样的糖苷水解酶,每一种代表用于设计嵌合酶的模板。通过在每种蛋白质的一级结构中保留dockerin结构域位置,催化结构域和dockerin结构域的活性都保留在酶嵌合体中。更进一步,从天然真菌纤维素体蛋白推断出的结构域定位可用于工程改造具有非天然有利特性(例如热稳定性)的多结构域蛋白。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号