首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Greedy Mechanism Based Particle Swarm Optimization for Path Planning Problem of an Unmanned Surface Vehicle
【2h】

Greedy Mechanism Based Particle Swarm Optimization for Path Planning Problem of an Unmanned Surface Vehicle

机译:基于贪婪机制的粒子群算法在无人飞行器路径规划中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, issues of climate change, environment abnormality, individual requirements, and national defense have caused extensive attention to the commercial, scientific, and military development of unmanned surface vehicles (USVs). In order to design high-quality routes for a multi-sensor integrated USV, this work improves the conventional particle swarm optimization algorithm by introducing the greedy mechanism and the 2-opt operation, based on a combination strategy. First, a greedy black box is established for particle initialization, overcoming the randomness of the conventional method and excluding a great number of infeasible solutions. Then the greedy selection strategy and 2-opt operation are adopted together for local searches, to maintain population diversity and eliminate path crossovers. In addition, Monte-Carlo simulations of eight instances are conducted to compare the improved algorithm with other existing algorithms. The computation results indicate that the improved algorithm has the superior performance, with the shortest route and satisfactory robustness, although a fraction of computing efficiency becomes sacrificed. Moreover, the effectiveness and reliability of the improved method is also verified by its multi-sensor-based application to a USV model in real marine environments.
机译:最近,气候变化,环境异常,个人要求和国防等问题引起了人们对无人水面飞行器(USV)的商业,科学和军事发展的广泛关注。为了为多传感器集成USV设计高质量的路线,这项工作通过在组合策略的基础上引入贪婪机制和2-opt操作,改进了传统的粒子群优化算法。首先,建立一个贪婪的黑匣子进行粒子初始化,克服了传统方法的随机性,并排除了许多不可行的解决方案。然后将贪婪选择策略和2-opt操作一起用于本地搜索,以保持种群多样性并消除路径交叉。另外,进行了八个实例的蒙特卡洛仿真,以将改进的算法与其他现有算法进行比较。计算结果表明,尽管牺牲了部分计算效率,但改进算法具有较高的性能,最短的路径和令人满意的鲁棒性。此外,该改进方法的有效性和可靠性还通过其在实际海洋环境中对USV模型的基于多传感器的应用得到了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号