首页> 美国卫生研究院文献>Molecules >Protein-Protein Interactions Prediction Based on Graph Energy and Protein Sequence Information
【2h】

Protein-Protein Interactions Prediction Based on Graph Energy and Protein Sequence Information

机译:基于图能量和蛋白质序列信息的蛋白质相互作用预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Identification of protein-protein interactions (PPIs) plays an essential role in the understanding of protein functions and cellular biological activities. However, the traditional experiment-based methods are time-consuming and laborious. Therefore, developing new reliable computational approaches has great practical significance for the identification of PPIs. In this paper, a novel prediction method is proposed for predicting PPIs using graph energy, named PPI-GE. Particularly, in the process of feature extraction, we designed two new feature extraction methods, the physicochemical graph energy based on the ionization equilibrium constant and isoelectric point and the contact graph energy based on the contact information of amino acids. The dipeptide composition method was used for order information of amino acids. After multi-information fusion, principal component analysis (PCA) was implemented for eliminating noise and a robust weighted sparse representation-based classification (WSRC) classifier was applied for sample classification. The prediction accuracies based on the five-fold cross-validation of the human, Helicobacter pylori ( ), and yeast data sets were 99.49%, 97.15%, and 99.56%, respectively. In addition, in five independent data sets and two significant PPI networks, the comparative experimental results also demonstrate that PPI-GE obtained better performance than the compared methods.
机译:蛋白质-蛋白质相互作用(PPI)的鉴定在理解蛋白质功能和细胞生物学活性中起着至关重要的作用。但是,传统的基于实验的方法既费时又费力。因此,开发新的可靠计算方法对PPI的识别具有重要的现实意义。本文提出了一种利用图能量预测PPI的新方法,称为PPI-GE。特别地,在特征提取过程中,我们设计了两种新的特征提取方法,一种基于电离平衡常数和等电点的理化图能量,另一种基于氨基酸的接触信息的接触图能量。二肽组成法用于氨基酸的订购信息。经过多信息融合之后,实施了主成分分析(PCA)以消除噪声,并将鲁棒加权的基于稀疏表示的分类(WSRC)分类器应用于样本分类。基于人,幽门螺杆菌()和酵母数据集的五重交叉验证的预测准确性分别为99.49%,97.15%和99.56%。此外,在五个独立的数据集和两个重要的PPI网络中,对比实验结果还表明,PPI-GE的性能优于比较方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号