首页> 美国卫生研究院文献>Journal of Animal Science >Prediction of slaughter age in pigs and assessment of the predictive value of phenotypic and genetic information using random forest
【2h】

Prediction of slaughter age in pigs and assessment of the predictive value of phenotypic and genetic information using random forest

机译:使用随机森林预测猪的屠宰年龄并评估表型和遗传信息的预测价值

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The weight of a pig and the rate of its growth are key elements in pig production. In particular, predicting future growth is extremely useful, since it can help in determining feed costs, pen space requirements, and the age at which a pig reaches a desired slaughter weight. However, making these predictions is challenging, due to the natural variation in how individual pigs grow, and the different causes of this variation. In this paper, we used machine learning, namely random forest ( ) regression, for predicting the age at which the slaughter weight of 120 kg is reached. Additionally, we used the variable importance score from RF to quantify the importance of different types of input data for that prediction. Data of 32,979 purebred Large White pigs were provided by Topigs Norsvin, consisting of phenotypic data, estimated breeding values ( ), along with pedigree and pedigree-genetic relationships. Moreover, we presented a 2-step data reduction procedure, based on random projections ( ) and principal component analysis ( ), to extract features from the pedigree and genetic similarity matrices for use as inputs in the prediction models. Our results showed that relevant phenotypic features were the most effective in predicting the output (age at 120 kg), explaining approximately 62% of its variance (i.e., = 0.62). Estimated breeding value, pedigree, or pedigree-genetic features interchangeably explain 2% of additional variance when added to the phenotypic features, while explaining, respectively, 38%, 39%, and 34% of the variance when used separately.
机译:猪的体重及其生长速度是养猪生产的关键要素。特别地,预测未来的增长非常有用,因为它可以帮助确定饲料成本,围栏空间需求以及猪达到所需屠宰体重的年龄。但是,由于个体猪生长方式的自然变化以及造成这种变化的不同原因,做出这些预测具有挑战性。在本文中,我们使用机器学习(即随机森林()回归)来预测达到120千克屠宰体重的年龄。此外,我们使用了来自RF的可变重要性评分来量化该预测的不同类型输入数据的重要性。 Topigs Norsvin提供了32,979头纯种大白猪的数据,包括表型数据,估计的育种值()以及谱系和谱系遗传关系。此外,我们提出了一个基于随机投影()和主成分分析()的两步数据缩减程序,以从谱系和遗传相似性矩阵中提取特征,以用作预测模型的输入。我们的结果表明,相关的表型特征在预测产量(120公斤龄)时最有效,可以解释其变异的62%(即= 0.62)。当添加到表型特征时,估计的育种价值,血统或血统遗传特征可互换地解释2%的额外变异,而单独使用时分别解释38%,39%和34%的变异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号