首页> 美国卫生研究院文献>other >Trajectory Clustering: a Non-Parametric Method for Grouping Gene Expression Time Courses with Applications to Mammary Development
【2h】

Trajectory Clustering: a Non-Parametric Method for Grouping Gene Expression Time Courses with Applications to Mammary Development

机译:轨迹聚类:基因表达时间过程分组的非参数方法在乳腺发育中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Trajectory clustering is a novel and statistically well-founded method for clustering time series data from gene expression arrays. Trajectory clustering uses non-parametric statistics and is hence not sensitive to the particular distributions underlying gene expression data. Each cluster is clearly defined in terms of direction of change of expression for successive time points (its ‘trajectory’), and therefore has easily appreciated biological meaning. Applying the method to a dataset from mouse mammary gland development, we demonstrate that it produces different clusters than Hierarchical, K-means, and Jackknife clustering methods, even when those methods are applied to differences between successive time points. Compared to all of the other methods, trajectory clustering was better able to match a manual clustering by a domain expert, and was better able to cluster groups of genes with known related functions.
机译:轨迹聚类是一种新颖且统计上有据可依的方法,用于聚类来自基因表达阵列的时间序列数据。轨迹聚类使用非参数统计,因此对基础基因表达数据的特定分布不敏感。在连续时间点(“轨迹”)的表达变化方向上清楚地定义了每个簇,因此易于理解生物学意义。将该方法应用于来自小鼠乳腺发育的数据集,我们证明了该方法产生的聚类不同于分层聚类,K均值聚类和折刀聚类方法,即使将这些方法应用于连续时间点之间的差异也是如此。与所有其他方法相比,轨迹聚类能够更好地匹配领域专家的手动聚类,并且能够更好地聚类具有已知相关功能的基因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号