首页> 美国卫生研究院文献>other >Network rigidity at finite temperature: Relationships between thermodynamic stability the nonadditivity of entropy and cooperativity in molecular systems
【2h】

Network rigidity at finite temperature: Relationships between thermodynamic stability the nonadditivity of entropy and cooperativity in molecular systems

机译:有限温度下的网络刚性:热力学稳定性熵的非可加性和分子系统中的协同性之间的关系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A statistical mechanical distance constraint model (DCM) is presented that explicitly accounts for network rigidity among constraints present within a system. Constraints are characterized by local microscopic free-energy functions. Topological rearrangements of thermally fluctuating constraints are permitted. The partition function is obtained by combining microscopic free energies of individual constraints using network rigidity as an underlying long-range mechanical interaction, giving a quantitative explanation for the nonadditivity in component entropies exhibited in molecular systems. Two exactly solved two-dimensional toy models representing flexible molecules that can undergo conformational change are presented to elucidate concepts, and to outline a DCM calculation scheme applicable to many types of physical systems. It is proposed that network rigidity plays a central role in balancing the energetic and entropic contributions to the free energy of biopolymers, such as proteins. As a demonstration, the distance constraint model is solved exactly for the α-helix to coil transition in homogeneous peptides. Temperature and size independent model parameters are fitted to Monte Carlo simulation data, which includes peptides of length 10 for gas phase, and lengths 10, 15, 20, and 30 in water. The DCM is compared to the Lifson-Roig model. It is found that network rigidity provides a mechanism for cooperativity in molecular structures including their ability to spontaneously self-organize. In particular, the formation of a characteristic topological arrangement of constraints is associated with the most probable microstates changing under different thermodynamic conditions.
机译:提出了统计机械距离约束模型(DCM),该模型明确考虑了系统中存在的约束之间的网络刚性。约束的特征在于局部微观自由能函数。允许热波动约束的拓扑重排。通过使用网络刚度作为基础的远程机械相互作用,通过组合单个约束的微观自由能来获得分配函数,从而定量解释了分子系统中组分熵的非可加性。提出了两个经过精确求解的二维玩具模型,它们表示可以经历构象变化的柔性分子,以阐明概念并概述适用于多种类型物理系统的DCM计算方案。有人提出,网络的刚性在平衡能量和熵对诸如蛋白质之类的生物聚合物自由能的贡献中起着中心作用。作为演示,可以精确求解距离约束模型,以解决均相肽段中从α螺旋到卷曲的转变。与温度和大小无关的模型参数适合于蒙特卡洛模拟数据,其中包括气相的长度为10的肽和水中的长度为10、15、20和30的肽。将DCM与Lifson-Roig模型进行比较。发现网络刚性为分子结构中的合作性提供了一种机制,包括其自发自组织的能力。特别地,约束的特征拓扑排列的形成与在不同热力学条件下最可能发生的微状态变化有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号