首页> 外文期刊>Biophysical Journal >Nonadditivity in conformational entropy upon molecular rigidification reveals a universal mechanism affecting folding cooperativity.
【24h】

Nonadditivity in conformational entropy upon molecular rigidification reveals a universal mechanism affecting folding cooperativity.

机译:分子刚性上构象熵的非可加性揭示了影响折叠协同性的普遍机制。

获取原文
获取原文并翻译 | 示例
           

摘要

Previously, we employed a Maxwell counting distance constraint model (McDCM) to describe alpha-helix formation in polypeptides. Unlike classical helix-coil transition theories, the folding mechanism derives from nonadditivity in conformational entropy caused by rigidification of molecular structure as intramolecular cross-linking interactions form along the backbone. For example, when a hydrogen bond forms within a flexible region, both energy and conformational entropy decrease. However, no conformational entropy is lost when the region is already rigid because atomic motions are not constrained further. Unlike classical zipper models, the same mechanism also describes a coil-to-beta-hairpin transition. Special topological features of the helix and hairpin structures allow the McDCM to be solved exactly. Taking full advantage of the fact that Maxwell constraint counting is a mean field approximation applied to the distribution of cross-linking interactions, we present an exact transfer matrix method that does not require any special topological feature. Upon application of the model to proteins, cooperativity within the folding transition is yet again appropriately described. Notwithstanding other contributing factors such as the hydrophobic effect, this simple model identifies a universal mechanism for cooperativity within polypeptide and protein-folding transitions, and it elucidates scaling laws describing hydrogen-bond patterns observed in secondary structure. In particular, the native state should have roughly twice as many constraints as there are degrees of freedom in the coil state to ensure high fidelity in two-state folding cooperativity, which is empirically observed.
机译:以前,我们采用麦克斯韦计数距离限制模型(McDCM)来描述多肽中的α-螺旋形成。与经典的螺旋-线圈过渡理论不同,折叠机制是由分子内骨架沿分子骨架交联而形成的分子结构刚性化所引起的构象熵的非可加性产生的。例如,当在柔性区域内形成氢键时,能量和构象熵均降低。但是,当该区域已经是刚性的时,不会失去构象熵,因为不会进一步限制原子运动。与经典的拉链模型不同,相同的机制还描述了从线圈到beta发夹的过渡过程。螺旋和发夹结构的特殊拓扑特征使McDCM得以精确求解。充分利用Maxwell约束计数是应用于交联相互作用分布的平均场近似这一事实,我们提出了一种不需要任何特殊拓扑特征的精确传递矩阵方法。在将模型应用于蛋白质时,再次适当地描述了折叠转变内的协同作用。尽管有其他影响因素,例如疏水作用,该简单模型仍可确定多肽和蛋白质折叠过渡中协同作用的通用机制,并且阐明了描述在二级结构中观察到的氢键模式的尺度定律。特别地,原始状态应具有大约两倍于线圈状态中的自由度的约束,以确保在两个状态下的折叠协作性具有高保真度,这是凭经验观察到的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号