首页> 美国卫生研究院文献>other >Mechanistic Implications of the Cysteine-Nicotinamide Adduct in Aldehyde Dehydrogenase Based on Quantum Mechanical/Molecular Mechanical Simulations
【2h】

Mechanistic Implications of the Cysteine-Nicotinamide Adduct in Aldehyde Dehydrogenase Based on Quantum Mechanical/Molecular Mechanical Simulations

机译:基于量子力学/分子力学模拟的半胱氨酸-烟酰胺加合物在醛脱氢酶中的作用机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent computer simulations of the cysteine nucleophilic attack on propanal in human mitochondrial Aldehyde Dehydrogenase (ALDH2) yielded an unexpected resu the chemically reasonable formation of a dead-end cysteine-cofactor adduct when NAD+ was in the “hydride transfer” position. More recently, this adduct found independent crystallographic support in work on formyltetrahydrofolate dehydrogenase, work which further found evidence of the same adduct on re-examination of deposited electron densities of ALDH2. Although the experimental data showed this adduct was reversible, several mechanistic questions arise from the fact that it forms at all. Here, we present results from further Quantum Mechanical/Molecular Mechanical (QM/MM) simulations toward understanding the mechanistic implications of adduct formation. These simulations revealed that formation of the oxyanion thiohemiacetal intermediate only when the nicotinamide ring of NAD+ is oriented away from the active site, contrary to prior arguments. In contrast, and in seeming paradox, when NAD is oriented to receive the hydride, disassociation of the oxyanion intermediate to form the dead-end adduct is more thermodynamically-favored than maintaining the oxyanion intermediate necessary for catalysis to proceed. However, this disassociation to the adduct could be avoided through proton transfer from the enzyme to the intermediate. Our results continue to indicate that the unlikely source of this proton is the Cys302 main chain amide.
机译:最近的计算机模拟对人线粒体醛脱氢酶(ALDH2)中丙氨酸的半胱氨酸亲核攻击产生了出乎意料的结果。当NAD +处于“氢化物转移”位置时,化学上合理地形成了半胱氨酸-辅因子末端加合物。最近,该加合物在甲酰基四氢叶酸脱氢酶的工作中发现了独立的晶体学支持,该工作进一步发现了相同的加合物在重新检查ALDH2的沉积电子密度时的证据。尽管实验数据表明这种加合物是可逆的,但实际上它还是会形成一些机械问题。在这里,我们介绍了进一步的量子力学/分子力学(QM / MM)模拟结果,以了解加合物形成的机理。这些模拟表明,仅当NAD +的烟酰胺环取向远离活性位点时,才形成氧阴离子硫半缩醛中间体,这与先前的论证相反。相反,在看似矛盾的情况下,当将NAD定向为接受氢化物时,与保持催化进行所必需的氧阴离子中间体相比,氧阴离子中间体的离解形成死端加合物的热力学更有利。但是,可以通过将质子从酶转移到中间体来避免这种与加合物的解离。我们的结果继续表明,该质子的不太可能来源是Cys302主链酰胺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号