首页> 美国卫生研究院文献>PLoS Neglected Tropical Diseases >Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome
【2h】

Ecological niche modelling for predicting the risk of cutaneous leishmaniasis in the Neotropical moist forest biome

机译:生态位模型预测新热带湿润森林生物群落中皮肤利什曼病的风险

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A major challenge of eco-epidemiology is to determine which factors promote the transmission of infectious diseases and to establish risk maps that can be used by public health authorities. The geographic predictions resulting from ecological niche modelling have been widely used for modelling the future dispersion of vectors based on the occurrence records and the potential prevalence of the disease. The establishment of risk maps for disease systems with complex cycles such as cutaneous leishmaniasis (CL) can be very challenging due to the many inference networks between large sets of host and vector species, with considerable heterogeneity in disease patterns in space and time. One novelty in the present study is the use of human CL cases to predict the risk of leishmaniasis occurrence in response to anthropogenic, climatic and environmental factors at two different scales, in the Neotropical moist forest biome (Amazonian basin and surrounding forest ecosystems) and in the surrounding region of French Guiana. With a consistent data set never used before and a conceptual and methodological framework for interpreting data cases, we obtained risk maps with high statistical support. The predominantly identified human CL risk areas are those where the human impact on the environment is significant, associated with less contributory climatic and ecological factors. For both models this study highlights the importance of considering the anthropogenic drivers for disease risk assessment in human, although CL is mainly linked to the sylvatic and peri-urban cycle in Meso and South America.
机译:生态流行病学的主要挑战是确定哪些因素促进了传染病的传播,并建立可被公共卫生当局使用的风险图。基于生态位建模的地理预测已被广泛用于根据疾病的发生记录和潜在疾病流行程度对媒介的未来传播进行建模。由于宿主和载体物种的大量集合之间存在许多推理网络,并且疾病模式在空间和时间上具有相当大的异质性,因此对于具有复杂周期的疾病系统(如皮肤利什曼病(CL))的风险图的建立可能非常具有挑战性。本研究的一个新奇之处是,在新热带湿润森林生物群落(亚马逊河流域和周围森林生态系统)和热带雨林中,使用人类CL病例来预测利什曼病在两种不同尺度下对人为,气候和环境因素的响应风险。法属圭亚那的周边地区。借助从未使用过的一致数据集以及用于解释数据案例的概念和方法框架,我们获得了具有高度统计支持的风险图。主要确定的人类CL风险区域是人类对环境的影响显着,与气候和生态因素的影响较小相关的区域。对于这两种模型,本研究强调了考虑人为因素对人类疾病风险评估的重要性,尽管CL主要与中观和南美洲的sylvatic和城市近郊周期有关。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号