首页> 美国卫生研究院文献>other >GEMS (Gene Expression MetaSignatures) a web resource for querying meta-analysis of expression microarray datasets: 17β-estradiol in MCF-7 cells
【2h】

GEMS (Gene Expression MetaSignatures) a web resource for querying meta-analysis of expression microarray datasets: 17β-estradiol in MCF-7 cells

机译:GEMS(Gene Expression MetaSignatures)一种用于查询表达微阵列数据集的荟萃分析的网络资源:MCF-7细胞中的17β-雌二醇

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With large amounts of public expression microrray data being generated by mulitple laboratories, it is a significant task for the bench researcher to routinely identify available datasets, then to evaluate the collective evidence across these datasets for regulation of a specific gene in a given system. 17β-estradiol stimulation of MCF-7 cells is a widely used model in the growth of breast cancer. While myriad independent studies have profiled the global effects of this hormone on gene expression in these cells, disparate experimental variables and the limited power of the individual studies have combined to restrict the agreement between them as to the specific gene expression signature elicited by this hormone. To address these issues, we have developed a freely-accessible web resource, Gene Expression MetaSignatures (GEMS, ) that provides the user a consensus for each gene in the system. We conducted a weighted meta-analysis encompassing over 13,000 genes across ten independent published datasets addressing the effect of 17β-estradiol on MCF-7 cells at early (3-4h) and late (24h) time points. In a literature survey of 58 genes previously shown to be regulated by 17β-estradiol in MCF-7 cells, the meta-analysis combined the statistical power of the underlying datasets to call regulation of these genes with nearly 85% accuracy (FDR-corrected p-value < 0.05). We anticipate that with future expression microarray dataset contributions from investigators GEMS will evolve into an important resource for the cancer and nuclear receptor signaling communities.
机译:多个实验室产生了大量公开表达的微射线数据,对于台式研究人员来说,常规确定可用的数据集,然后评估这些数据集中的集体证据以调节给定系统中的特定基因是一项重要的任务。 MCF-7细胞的17β-雌二醇刺激是乳腺癌生长中广泛使用的模型。尽管无数的独立研究已经概述了这种激素对这些细胞中基因表达的总体影响,但不同的实验变量和个别研究的有限能力相结合,限制了它们之间关于该激素引起的特定基因表达特征的一致。为了解决这些问题,我们开发了一个可免费访问的网络资源,即Gene Expression MetaSignatures(GEMS,),可为用户提供系统中每个基因的共识。我们进行了加权荟萃分析,涵盖了10个独立的已公开数据集中的13,000个以上的基因,研究了17β-雌二醇对MCF-7细胞在早期(3-4h)和晚期(24h)时间点的影响。在对先前显示在MCF-7细胞中受17β-雌二醇调控的58个基因的文献调查中,荟萃分析结合了基础数据集的统计能力,以近乎85%的准确性对这些基因进行调控(经FDR校正的p值<0.05)。我们预期,随着研究人员将来表达微阵列数据集的贡献,GEMS将发展成为癌症和核受体信号传导社区的重要资源。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号