首页> 美国卫生研究院文献>other >Extraction Techniques for the Decellularization of Tissue Engineered Articular Cartilage Constructs
【2h】

Extraction Techniques for the Decellularization of Tissue Engineered Articular Cartilage Constructs

机译:组织工程关节软骨构建体的脱细胞提取技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Several prior studies have been performed to determine the feasibility of tissue decellularization to create a non-immunogenic xenogenic tissue replacement for bladder, vasculature, heart valves, knee meniscus, temporomandibular joint disc, ligament, and tendon. However, limited work has been performed with articular cartilage, and no studies have examined the decellularization of tissue engineered constructs. The objective of this study was to assess the effects of different decellularization treatments on articular cartilage constructs, engineered using a scaffoldless approach, after 4 wks of culture, using a two-phased approach. In the first phase, five different treatments were examined: 1) 1% SDS, 2) 2% SDS, 3) 2% Tributyl phosphate, 4) 2% Triton X-100, and 5) Hypotonic followed by hypertonic solution. These treatments were applied for either 1 h or 8 h, followed by a 2 h wash in PBS. Following this wash, the constructs were assessed histologically, biochemically for cellularity, GAG, and collagen content, and biomechanically for compressive and tensile properties. In phase II, the best treatment from phase I was applied for 1, 2, 4, 6, or 8 h in order to optimize the application time. Treatment with 2% SDS for 1 h or 2 h significantly reduced the DNA content of the tissue, while maintaining the biochemical and biomechanical properties. On the other hand, 2% SDS for 6 h or 8 h resulted in complete histological decellularization, with complete elimination of cell nuclei on histological staining, although GAG content and compressive properties were significantly decreased. Overall, 2% SDS, for 1 or 2 h, appeared to be the most effective agent for cartilage decellularization, as it resulted in decellularization while maintaining the functional properties. The results of this study are exciting as they indicate the feasibility of creating engineered cartilage that may be non-immunogenic as a replacement tissue.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号