首页> 美国卫生研究院文献>other >INTRAUTERINE EXPOSURE TO POLYCYCLIC AROMATIC HYDROCARBONS FINE PARTICULATE MATTER AND EARLY WHEEZE. PROSPECTIVE BIRTH COHORT STUDY IN 4-YEAR OLDS
【2h】

INTRAUTERINE EXPOSURE TO POLYCYCLIC AROMATIC HYDROCARBONS FINE PARTICULATE MATTER AND EARLY WHEEZE. PROSPECTIVE BIRTH COHORT STUDY IN 4-YEAR OLDS

机译:宫内暴露于多环芳烃细颗粒物质和早熟。 4岁儿童的预期出生队列研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main goal of the study was to determine the relationship between prenatal exposure to polycyclic aromatic hydrocarbons (PAHs) measured by PAH-DNA adducts in umbilical cord blood and early wheeze. The level of PAH-DNA adducts in the cord blood is assumed to reflect the cumulative dose of PAHs absorbed by the fetus over the prenatal period. The effect of prenatal PAH exposure on respiratory health measured by the incidence rate ratio (IRR) for the number of wheezing days in the subsequent four year follow-up was adjusted for potential confounding factors such as personal prenatal exposure to fine particulate matter (PM2.5), environmental tobacco smoke (ETS), gender of child, maternal characteristics (age, education and atopy), parity, and mold/dampness in the home. The study sample includes 339 newborns of non-smoking mothers 18-35 years of age and free from chronic diseases, who were recruited from ambulatory prenatal clinics in the first or second trimester of pregnancy. The number of wheezing days during the first two years of life was positively associated with prenatal level of PAH-DNA adducts (IRR = 1.69, 95%CI = 1.52 – 1.88), prenatal particulate matter (PM2.5) level dichotomized by the median (IRR = 1.38; 95%CI: 1.25 – 1.51), maternal atopy (IRR = 1.43; 95%CI: 1.29 – 1.58), moldy/damp house (IRR = 1.43; 95%CI: 1.27 – 1.61). The level of maternal education and maternal age at delivery were inversely associated with the IRRs for wheeze. The significant association between frequency of wheeze and the level of prenatal environmental hazards (PAHs and PM2.5) was not observed at ages 3 or 4 years. Although the frequency of wheezing at ages 3 or 4 years was no longer associated with prenatal exposure to PAHs and PM2.5, its occurrence depended on the presence of wheezing in the first two years of life, which nearly tripled the risk of wheezing in later life. In conclusion, the findings may suggest that driving force for early wheezing (<24 months of age) are different to those leading to later onset of wheeze. As we reported no synergistic effects between prenatal PAH (measured by PAH-DNA adducts) and PM2.5 exposures on early wheeze, this suggests the two exposures may exert independent effects via different biological mechanism on wheeze.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号