首页> 美国卫生研究院文献>other >Application of a modified LSER model to retention on a butylimidazolium-based column for high performance liquid chromatography
【2h】

Application of a modified LSER model to retention on a butylimidazolium-based column for high performance liquid chromatography

机译:改性LSER模型在高效液相色谱中施用丁基咪唑柱柱的施用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Previously, a new HPLC stationary phase based on n-butylimidazolium bromide was investigated using a linear solvation energy relationship (LSER) to systematically evaluate the intermolecular interactions between 32 test solutes and the stationary phase. The results and further comparisons with conventional reversed phase systems revealed that retention properties are similar to phenyl phases in both methanol/water and acetonitrile/water mixtures. In this work, the LSER model is extended by including the degree of ionization molecular descriptor, D, which takes into account the pKa of ionizable analytes and the pH of the mobile phase. The D molecular descriptor has been further divided into D+ and D components that separately account for the ionization of basic and acidic solutes, respectively. This is the first study where the ionization terms for weakly acidic solutes and weakly basic solutes have been separated. LSER results obtained with the expanded solute set with and without the inclusion of the D+ and D solute descriptors were compared. The improved correlation and standard error obtained for the expanded test set in the presence and absence of the D+ and D descriptors (R2: 0.987 vs 0.846; se: 0.051 vs 0.163 for 60% MeOH) supports inclusion of these additional terms. Further, the coefficients obtained from the multiple linear regression for the expanded test set with the D+ and D descriptors was more consistent with the coefficients obtained when the test set included just neutral analytes. In addition, the expanded LSER model did a better job of predicting elution order for the ionizable analytes. This work provides further supporting evidence for the multimodal nature of the butylimidazolium stationary phase.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号