首页> 美国卫生研究院文献>other >Microchip Electrophoresis of N-Glycans on Serpentine Separation Channels with Asymmetrically Tapered Turns
【2h】

Microchip Electrophoresis of N-Glycans on Serpentine Separation Channels with Asymmetrically Tapered Turns

机译:具有不对称锥形转弯的蛇形分离通道上的N-聚糖微芯片电泳

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We designed and fabricated microfluidic devices with serpentine separation channels and asymmetrically tapered turns, thus allowing high efficiency separations and minimizing band broadening associated with the “racetrack” effect. We evaluated the performance of these devices by measuring the variation in separation efficiency with separation length, electric field strength, taper ratio of the turns, and number of turns. N-Glycans derived from ribonuclease B (RNase B) and labeled with 8-aminopyrene-1,3,6-trisulfonic acid were electrophoretically separated on serpentine channels with separation lengths of 11, 18, 22, and 36 cm at electric field strengths from 750 to 1750 V/cm. Separations on the 36-cm channel produced plate numbers up to 940,000 with an analysis time under 3.1 min, whereas separations on the 22-cm channel had a shorter analysis time (less than 1.25 min), still with respectable efficiencies (up to 600,000 plates). Turn-induced dispersion was minimized with taper ratios 2 and 3, whereas having two or four 180° turns along the separation length did not impact the overall efficiency. The developed device was used to analyze native and desialylated N-glycans derived from the blood serum of an ovarian cancer patient and a disease-free individual. Separation efficiencies similar to that achieved with the model glycans from RNase B were attained for these biological samples.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号