首页> 美国卫生研究院文献>other >A machine learning based method to improve docking scoring functions and its application to drug repurposing
【2h】

A machine learning based method to improve docking scoring functions and its application to drug repurposing

机译:一个基于机器学习的方法提高对接打分函数及其应用药物再利用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Docking scoring functions are notoriously weak predictors of binding affinity. They typically assign a common set of weights to the individual energy terms that contribute to the overall energy score, however, these weights should be gene family-dependent. In addition, they incorrectly assume that individual interactions contribute towards the total binding affinity in an additive manner. In reality, noncovalent interactions often depend on one another in a nonlinear manner. In this paper we show how the use of support vector machines (SVMs), trained by associating sets of individual energy terms retrieved from molecular docking with the known binding affinity of each compound from high-throughput screening experiments, can be used to improve the correlation between known binding affinities and those predicted by the docking program eHiTS. We construct two prediction models; a regression model trained using IC50 values from BindingDB, and a classification model trained using active and decoy compounds from the Directory of Useful Decoys (DUD). Moreover, to address the issue of overrepresentation of negative data in high-throughput screening data sets, we have designed a multiple-planar SVM training procedure for the classification model. The increased performance that both SVMs give when compared with the original eHiTS scoring function highlights the potential for using nonlinear methods when deriving overall energy scores from their individual components. We apply the above methodology to train a new scoring function for direct inhibitors of M.tuberculosis (M.tb) InhA. By combining ligand binding site comparison with the new scoring function, we propose that phosphodiesterase inhibitors can potentially be repurposed to target M.tb InhA. Our methodology may be applied to other gene families for which target structures and activity data are available, as demonstrated in the work presented here.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号