首页> 美国卫生研究院文献>other >The metabolic bioactivation of caffeic acid phenethyl ester (CAPE) mediated by tyrosinase selectively inhibits glutathione S-transferase
【2h】

The metabolic bioactivation of caffeic acid phenethyl ester (CAPE) mediated by tyrosinase selectively inhibits glutathione S-transferase

机译:由酪氨酸酶介导的咖啡酸苯乙烷(己酯)的代谢生物活化选择性地抑制谷胱甘肽S转移酶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Glutathione S-transferase (GST) and multidrug resistance-associated proteins (MRPs) play major roles in drug resistance in melanoma. In this study, we investigated caffeic acid phenethyl ester (CAPE) as a selective GST inhibitor in the presence of tyrosinase, which is abundant in melanoma cells. Tyrosinase bioactivates CAPE to an o-quinone, which reacts with glutathione to form CAPE-SG conjugate. Our findings indicate that 90% CAPE was metabolized by tyrosinase after a 60-min incubation. LC–MS/MS analyses identified a CAPE-SG conjugate as a major metabolite. In the presence of tyrosinase, CAPE (10–25 µM) showed 70–84% GST inhibition; whereas in the absence of tyrosinase, CAPE did not inhibit GST. CAPE-SG conjugate and CAPE-quinone (25 µM) demonstrated ≥85% GST inhibition via reversible and irreversible mechanisms, respectively. Comparing with CDNB and GSH, the non-substrate CAPE acted as a weak, reversible GST inhibitor at concentrations >50 µM. Furthermore, MK-571, a selective MRP inhibitor, and probenecid, a non-selective MRP inhibitor, decrease the IC50 of CAPE (15 µM) by 13% and 21%, apoptotic cell death by 3% and 13%, and mitochondrial membrane potential in human SK-MEL-28 melanoma cells by 10% and 56%, respectively. Moreover, computational docking analyses suggest that CAPE binds to the GST catalytic active site. Caffeic acid, a hydrolyzed product of CAPE, showed a similar GST inhibition in the presence of tyrosinase. Although, as controls, 4-hydroxyanisole and l-tyrosine were metabolized by tyrosinase to form quinones and glutathione conjugates, they exhibited no GST inhibition in the absence and presence of tyrosinase. In conclusion, both CAPE and caffeic acid selectively inhibited GST in the presence of tyrosinase. Our results suggest that intracellularly formed quinones and glutathione conjugates of caffeic acid and CAPE may play major roles in the selective inhibition of GST in SK-MEL-28 melanoma cells. Moreover, the inhibition of MRP enhances CAPE-induced toxicity in the SK-MEL-28 melanoma cells.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号