首页> 美国卫生研究院文献>other >Principles of strategic drug delivery to the brain (SDDB): Development of anorectic and orexigenic analogs of leptin
【2h】

Principles of strategic drug delivery to the brain (SDDB): Development of anorectic and orexigenic analogs of leptin

机译:战略给药的原则到大脑(sDDB):厌食的发展和瘦素促进食欲类似物

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The blood–brain barrier (BBB) presents a tremendous challenge for the delivery of drugs to the central nervous system (CNS). This includes drugs that target brain receptors for the treatment of obesity and anorexia. Strategic drug delivery to brain (SDDB) is an approach that considers in depth the relations among the BBB, the candidate therapeutic, the CNS target, and the disease state to be treated. Here, we illustrate principles of SDDB with two different approaches to developing drugs based on leptin. In normal body weight humans and in non-obese rodents, leptin is readily transported across the BBB and into the CNS where it inhibits feeding and enhances thermogenesis. However, in obesity, the transport of leptin across the BBB is impaired, resulting in a resistance to leptin. As a result, it is difficult to treat obesity with leptin or its analogs that depend on the leptin transporter for access to the CNS. To treat obesity, we developed a leptin agonist modified by the addition of pluronic block copolymers (P85-leptin). P85-leptin retains biological activity and is capable of crossing the BBB by a mechanism that is not dependent on the leptin transporter. As such, P85-leptin is able to cross the BBB of obese mice at a rate similar to that of native leptin in lean mice. To treat anorexia, we developed a leptin antagonist modified by pegylation (PEG-MLA) that acts primarily by blocking the BBB transporter for endogenous, circulating leptin. This prevents blood-borne, endogenous leptin from entering the CNS, essentially mimicking the leptin resistance seen in obesity, and resulting in a significant increase in adiposity. These examples illustrate two strategies in which an understanding of the interactions among the BBB, CNS targets, and candidate therapeutics under physiologic and diseased conditions can be used to develop drugs effective for the treatment of brain disease.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号