首页> 美国卫生研究院文献>other >Structural analyses of covalent enzyme-substrate analogue complexes reveal strengths and limitations of de novo enzyme design
【2h】

Structural analyses of covalent enzyme-substrate analogue complexes reveal strengths and limitations of de novo enzyme design

机译:共价酶 - 底物类似物复合物的结构分析揭示了强度和从头酶设计限制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report the cocrystal structures of a computationally designed and experimentally optimized retro-aldol enzyme with covalently bound substrate analogs. The structure with covalently bound substrate analog is similar but not identical to the design model, with an RMSD over the active site residues and equivalent substrate atoms of 1.4Å. As in the design model, the binding pocket orients the substrate through hydrophobic interactions with the naphthyl moiety such that the oxygen atoms analogous to the carbinolamine and β-hydroxyl oxygens are positioned near a network of bound waters. However, there are differences between the design model and the structure: the orientation of the naphthyl group and the conformation of the catalytic lysine are slightly different; the bound water network appears to be more extensive; and the bound substrate analog exhibits more conformational heterogeneity than in typical native enzyme-inhibitor complexes. Alanine scanning of the active site residues shows that both the catalytic lysine and the residues around the binding pocket for the substrate naphthyl group make critical contributions to catalysis. Mutating the set of water-coordinating residues also significantly reduces catalytic activity. The crystal structure of the enzyme with a smaller substrate analogue that lacks the naphthyl rings shows the catalytic lysine to be more flexible than in the naphthyl substrate complex; increased preorganization of the active site would likely improve catalysis. The covalently bound complex structures and mutagenesis data highlight strengths and weaknesses of the de novo enzyme design strategy.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号