首页> 美国卫生研究院文献>other >Membrane-tethered MUC1 Mucin is Phosphorylated by EGFR in Airway Epithelial Cells and Associates with TLR5 to Inhibit Recruitment of MyD88
【2h】

Membrane-tethered MUC1 Mucin is Phosphorylated by EGFR in Airway Epithelial Cells and Associates with TLR5 to Inhibit Recruitment of MyD88

机译:膜结合粘蛋白mUC1是通过磷酸化的EGFR在气道上皮细胞和关联在一起TLR5到的myD88的禁止招募

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

MUC1 is a membrane-tethered mucin glycoprotein expressed on the apical surface of mucosal epithelial cells. Previous in vivo and in vitro studies established that MUC1 counter-regulates airway inflammation by suppressing TLR signaling. In this report, we elucidate the mechanism by which MUC1 inhibits TLR5 signaling. Overexpression of MUC1 in human embryonic kidney HEK293 (293) cells dramatically reduced Pseudomonas aeruginosa (Pa)-stimulated IL-8 expression, and decreased the activation of NF-κB and MAPK compared with MUC1 non-expressing cells. Overexpression of MUC1 in 293 cells, however, did not affect NF-κB or MAKP activation in response to TNF-α. Overexpression of MyD88 abrogated the ability of MUC1 to inhibit NF-κB activation, and MUC1 overexpression inhibited flagellin-induced association of TLR5/MyD88, compared with controls. The MUC1 cytoplasmic tail (MUC1 CT) associated with TLR5 in all cells tested, including 293T cells, human lung adenocarcinoma cell line A549 cells, and human and mouse primary airway epithelial cells. Activation of EGFR tyrosine kinase with TGF-α induced phosphorylation of the MUC1 CT at the Y46 EKV sequence and increased association of MUC1/TLR5. Finally, in vivo experiments demonstrated increased immunofluorescence co-localization of Muc1/TLR5 and Muc1/phosphotyrosine staining patterns in mouse airway epithelium and increased Muc1 tyrosine phosphorylation in mouse lung homogenates following Pa infection. In conclusion, EGFR tyrosine phosphorylates MUC1, leading to an increase in its association with TLR5, thereby competitively and reversibly inhibiting recruitment of MyD88 to TLR5 and downstream signaling events. This unique ability of MUC1 to control TLR5 signaling suggests its potential role in the pathogenesis of chronic inflammatory lung diseases.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号