首页> 美国卫生研究院文献>other >Modification of Lipid Bilayer Structure by Diacylglycerol: A Comparative Study of Diacylglycerol and Cholesterol
【2h】

Modification of Lipid Bilayer Structure by Diacylglycerol: A Comparative Study of Diacylglycerol and Cholesterol

机译:二酰基甘油的脂质双层结构的改性:二酰基甘油和胆固醇的对比研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Diacylglycerols (DAGs) are important second messengers in biomembranes, and they can activate protein kinase C and many other enzymes and receptors. However, their interactions with cholesterol and other lipids have not been previously studied using molecular dynamics (MD) simulation. In this study, nine independent atomistic MD simulations were performed to specifically investigate the interactions between di16:0DAG, 16:0,18:1-phosphatidylcholine (POPC), and cholesterol. Despite of their substantial differences in chemical structure, DAG and cholesterol produce some very similar effects in POPC bilayers: increasing acyl chain order and bilayer thickness, reducing volume-per-lipid, and decreasing lateral diffusion of molecules. More significantly, DAG also produces a strong “condensing effect” in PC bilayers. In comparison, cholesterol is more effective than DAG in producing the above effects. The driving force for the condensing effect is their molecular shape: DAG and cholesterol both have small polar headgroups and large hydrophobic bodies. In a lipid bilayer, in order to avoid the unfavorable exposure of their hydrophobic parts to water, neighboring phospholipid headgroups move toward cholesterol or DAG to provide cover. Thus, seemingly complex interactions between DAG, cholesterol and phospholipid can be clearly explained using the Umbrella Model. Our simulations confirmed the hypothesis that DAG increases the spacing between phospholipid headgroups, which is important for activating protein kinase C and other enzymes. Interestingly, our simulations also show that the conventional wisdom that the spacing created by a DAG is directly above the DAG molecule is incorrect; instead, the largest spacing usually occurs between the first and the second nearest-neighbor PC headgroups from a DAG, due to the umbrella effect.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号