首页> 美国卫生研究院文献>other >Seeing is Believing: Video Classification for Computed Tomographic Colonography Using Multiple-Instance Learning
【2h】

Seeing is Believing: Video Classification for Computed Tomographic Colonography Using Multiple-Instance Learning

机译:眼见为实:视频分类的计算机断层结肠镜使用多示例学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present development and testing results for a novel colonic polyp classification method for use as part of a computed tomographic colonography (CTC) computer-aided detection (CAD) system. Inspired by the interpretative methodology of radiologists using 3D fly-through mode in CTC reading, we have developed an algorithm which utilizes sequences of images (referred to here as videos) for classification of CAD marks. For each CAD mark, we created a video composed of a series of intraluminal, volume-rendered images visualizing the detection from multiple viewpoints. We then framed the video classification question as a multiple-instance learning (MIL) problem. Since a positive (negative) bag may contain negative (positive) instances, which in our case depends on the viewing angles and camera distance to the target, we developed a novel MIL paradigm to accommodate this class of problems. We solved the new MIL problem by maximizing a L2-norm soft margin using semidefinite programming, which can optimize relevant parameters automatically. We tested our method by analyzing a CTC data set obtained from 50 patients from three medical centers. Our proposed method showed significantly better performance compared with several traditional MIL methods.
机译:在本文中,我们提出了一种新的结肠息肉分类方法的开发和测试结果,用作计算机断层扫描(CTC)计算机辅助检测(CAD)系统的一部分。通过CTC读数中使用3D飞行模式的放射科学家的解释方法的启发,我们开发了一种利用CAD标记分类的图像(此处称为视频)的算法。对于每个CAD标记,我们创建了由一系列内腔内,渲染图像组成的视频,可视化多个视点检测。然后我们将视频分类问题框架作为多实例学习(MIL)问题。由于正(负)袋可以包含负(正)的情况,因此在我们的情况下,这取决于对目标的观察角和相机距离,我们开发了一种新的MIL范例来适应这类问题。我们通过使用SEMIDEFINITE编程最大化L2-NOM软保证金来解决新的MIL问题,可以自动优化相关参数。我们通过分析从三个医疗中心50名患者获得的CTC数据集进行测试。我们所提出的方法与几种传统MIL方法相比,表现明显更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号