首页> 美国卫生研究院文献>other >Activity Recognition on Streaming Sensor Data
【2h】

Activity Recognition on Streaming Sensor Data

机译:流传感器数据的活动识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many real-world applications that focus on addressing needs of a human, require information about the activities being performed by the human in real-time. While advances in pervasive computing have lead to the development of wireless and non-intrusive sensors that can capture the necessary activity information, current activity recognition approaches have so far experimented on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper we propose and evaluate a sliding window based approach to perform activity recognition in an on line or streaming fashion; recognizing activities as and when new sensor events are recorded. To account for the fact that different activities can be best characterized by different window lengths of sensor events, we incorporate the time decay and mutual information based weighting of sensor events within a window. Additional contextual information in the form of the previous activity and the activity of the previous window is also appended to the feature describing a sensor window. The experiments conducted to evaluate these techniques on real-world smart home datasets suggests that combining mutual information based weighting of sensor events and adding past contextual information into the feature leads to best performance for streaming activity recognition.
机译:许多专注于满足人类需求的现实应用程序都需要有关人类实时执行的活动的信息。虽然普及计算的进步导致可以捕获必要的活动信息的无线和非侵入式传感器的发展,但到目前为止,当前的活动识别方法已经在与活动有关的脚本事件或预先分段的传感器事件序列上进行了实验。在本文中,我们提出并评估了一种基于滑动窗口的方法,以在线或流式方式执行活动识别。在记录新传感器事件时以及在记录新传感器事件时识别活动。考虑到以下事实:可以通过传感器事件的不同窗口长度来最好地描述不同的活动,我们将时间衰减和基于互事件的传感器事件加权基于一个窗口。先前活动和先前窗口的活动形式的其他上下文信息也将附加到描述传感器窗口的功能上。为评估现实智能家庭数据集上的这些技术而进行的实验表明,结合基于互信息的传感器事件加权并将过去的上下文信息添加到功能中,可以实现流活动识别的最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号