首页> 美国卫生研究院文献>other >Improved data normalization methods for reverse phase protein microarray analysis of complex biological samples
【2h】

Improved data normalization methods for reverse phase protein microarray analysis of complex biological samples

机译:改进复合生物样品反相蛋白微阵列分析的数据归一化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Reverse phase protein microarrays (RPMA) are designed for quantitative, multiplexed analysis of proteins, and their posttranslational modified forms, from a limited amount of sample. To correct for sample to sample variability due to the number of cells in each lysate and the presence of extracellular proteins or red blood cells, a normalization method is required that is independent of these potentially confounding parameters. We adopted a gene microarray algorithm for use with RPMA to optimize the proteomic data normalization process and developed a systematic approach to RPMA processing and analysis, tailored to the study set. Our approach capitalizes on the gene microarray algorithms geNorm and NormFinder to identify the normalization parameter with the lowest variability across a proteomic sample set. Seven analytes (ssDNA, glyceraldehyde 3-phosphate dehydrogenase, α/β-tubulin, mitochondrial ribosomal protein L11, ribosomal protein L13a, β-actin, and total protein) were compared across sample sets including cell lines, tissues subjected to laser capture microdissection, and blood-contaminated tissues. We examined normalization parameters to correct for red blood cell content. We show that single-stranded DNA (ssDNA) is proportional to total non-red blood cell content and is a suitable RPMA normalization parameter. Simple modifications to RPMA processing allow flexibility in using ssDNA- or protein-based normalization molecules.
机译:反相蛋白质微阵列(RPMA)设计用于从有限数量的样品中进行蛋白质及其翻译后修饰形式的定量,多重分析。为了校正由于每个裂解物中的细胞数量以及细胞外蛋白或红细胞的存在而导致的样品之间的差异,需要一种独立于这些潜在混淆参数的归一化方法。我们采用了可与RPMA结合使用的基因微阵列算法来优化蛋白质组数据的标准化过程,并针对研究集开发了一种系统化的RPMA处理和分析方法。我们的方法利用基因微阵列算法geNorm和NormFinder来识别蛋白质组学样本集中变异性最低的标准化参数。比较了包括细胞系,接受激光捕获显微切割的组织在内的七种分析物(ssDNA,3-磷酸甘油醛脱氢酶,α/β-微管蛋白,线粒体核糖体蛋白L11,核糖体蛋白L13a,β-肌动蛋白和总蛋白)和受血液污染的组织。我们检查了归一化参数以校正红细胞含量。我们显示单链DNA(ssDNA)与总的非红血球含量成正比,并且是合适的RPMA归一化参数。对RPMA处理的简单修改允许灵活使用基于ssDNA或蛋白质的标准化分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号