首页> 美国卫生研究院文献>other >Approaching Expert Results Using a Hierarchical Cerebellum Parcellation Protocol for Multiple Inexpert Human Raters
【2h】

Approaching Expert Results Using a Hierarchical Cerebellum Parcellation Protocol for Multiple Inexpert Human Raters

机译:使用用于多个Inexpert人类评估者的分层小脑局部局部局部分类协议来接近专家结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Volumetric measurements obtained from image parcellation have been instrumental in uncovering structure-function relationships. However, anatomical study of the cerebellum is a challenging task. Because of its complex structure, expert human raters have been necessary for reliable and accurate segmentation and parcellation. Such delineations are time-consuming and prohibitively expensive for large studies. Therefore, we present a three-part cerebellar parcellation system that utilizes multiple inexpert human raters that can efficiently and expediently produce results nearly on par with those of experts. This system includes a hierarchical delineation protocol, a rapid verification and evaluation process, and statistical fusion of the inexpert rater parcellations. The quality of the raters’ and fused parcellations was established by examining their Dice similarity coefficient, region of interest (ROI) volumes, and the intraclass correlation coefficient of region volume. The intra-rater ICC was found to be 0.93 at the finest level of parcellation.
机译:从图像分割获得的体积测量值在揭示结构与功能的关系中起了重要作用。但是,小脑的解剖学研究是一项艰巨的任务。由于其复杂的结构,对于可靠,准确的分割和分割,需要专业的评估人员。对于大型研究而言,这样的描述既费时又昂贵。因此,我们提出了一个由三部分组成的小脑分割系统,该系统利用多个不熟练的人类评估者,可以高效,便捷地产生与专家几乎相同的结果。该系统包括分层的描述协议,快速的验证和评估过程以及不熟练的评估者分类的统计融合。评估者和融合分类器的质量是通过检查它们的Dice相似系数,感兴趣区域(ROI)体积以及区域内类内相关系数来确定的。评估者内部的ICC在最好的分割水平下为0.93。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号